These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 25873009

  • 1. Characterizing the Intermediates Compound I and II in the Cytochrome P450 Catalytic Cycle with Nonlinear X-ray Spectroscopy: A Simulation Study.
    Zhang Y, Biggs JD, Mukamel S.
    Chemphyschem; 2015 Jun 22; 16(9):2006-14. PubMed ID: 25873009
    [Abstract] [Full Text] [Related]

  • 2. Spectroscopic studies of the cytochrome P450 reaction mechanisms.
    Mak PJ, Denisov IG.
    Biochim Biophys Acta Proteins Proteom; 2018 Jan 22; 1866(1):178-204. PubMed ID: 28668640
    [Abstract] [Full Text] [Related]

  • 3. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P, Tye JW, Hall MB.
    Inorg Chem; 2010 Jan 04; 49(1):188-98. PubMed ID: 19968237
    [Abstract] [Full Text] [Related]

  • 4. Three-dimensional attosecond resonant stimulated X-ray Raman spectroscopy of electronic excitations in core-ionized glycine.
    Zhang Y, Biggs JD, Hua W, Dorfman KE, Mukamel S.
    Phys Chem Chem Phys; 2014 Nov 28; 16(44):24323-31. PubMed ID: 25297460
    [Abstract] [Full Text] [Related]

  • 5. New insights into the nature of observable reaction intermediates in cytochrome P450 NO reductase by using a combination of spectroscopy and quantum mechanics/molecular mechanics calculations.
    Riplinger C, Bill E, Daiber A, Ullrich V, Shoun H, Neese F.
    Chemistry; 2014 Feb 03; 20(6):1602-14. PubMed ID: 24453075
    [Abstract] [Full Text] [Related]

  • 6. P450 structures and oxidative metabolism of xenobiotics.
    Lewis DF.
    Pharmacogenomics; 2003 Jul 03; 4(4):387-95. PubMed ID: 12831319
    [Abstract] [Full Text] [Related]

  • 7. Spectroscopic characterization of cytochrome P450 Compound I.
    Jung C, de Vries S, Schünemann V.
    Arch Biochem Biophys; 2011 Mar 01; 507(1):44-55. PubMed ID: 21195047
    [Abstract] [Full Text] [Related]

  • 8. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory.
    Zhang Y, Biggs JD, Healion D, Govind N, Mukamel S.
    J Chem Phys; 2012 Nov 21; 137(19):194306. PubMed ID: 23181305
    [Abstract] [Full Text] [Related]

  • 9. Compound I in heme thiolate enzymes: a comparative QM/MM study.
    Cho KB, Hirao H, Chen H, Carvajal MA, Cohen S, Derat E, Thiel W, Shaik S.
    J Phys Chem A; 2008 Dec 18; 112(50):13128-38. PubMed ID: 18850694
    [Abstract] [Full Text] [Related]

  • 10. New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.
    Kumar D, Hirao H, de Visser SP, Zheng J, Wang D, Thiel W, Shaik S.
    J Phys Chem B; 2005 Oct 27; 109(42):19946-51. PubMed ID: 16853579
    [Abstract] [Full Text] [Related]

  • 11. Electronic structure of Ni complexes by X-ray resonance Raman spectroscopy (resonant inelastic X-ray scattering).
    Glatzel P, Bergmann U, Gu W, Wang H, Stepanov S, Mandimutsira BS, Riordan CG, Horwitz CP, Collins T, Cramer SP.
    J Am Chem Soc; 2002 Aug 21; 124(33):9668-9. PubMed ID: 12175200
    [Abstract] [Full Text] [Related]

  • 12. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase.
    Harvey JN, Bathelt CM, Mulholland AJ.
    J Comput Chem; 2006 Sep 21; 27(12):1352-62. PubMed ID: 16788912
    [Abstract] [Full Text] [Related]

  • 13. X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative.
    Newcomb M, Halgrimson JA, Horner JH, Wasinger EC, Chen LX, Sligar SG.
    Proc Natl Acad Sci U S A; 2008 Jun 17; 105(24):8179-84. PubMed ID: 18174331
    [Abstract] [Full Text] [Related]

  • 14. X-ray absorption spectroscopy of chloroperoxidase compound I: Insight into the reactive intermediate of P450 chemistry.
    Stone KL, Behan RK, Green MT.
    Proc Natl Acad Sci U S A; 2005 Nov 15; 102(46):16563-5. PubMed ID: 16275918
    [Abstract] [Full Text] [Related]

  • 15. Resonance Raman spectroscopic studies of peroxo and hydroperoxo intermediates in lauric acid (LA)-bound cytochrome P450 119.
    Usai R, Kaluka D, Mak PJ, Liu Y, Kincaid JR.
    J Inorg Biochem; 2020 Jul 15; 208():111084. PubMed ID: 32470906
    [Abstract] [Full Text] [Related]

  • 16. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates.
    Altun A, Shaik S, Thiel W.
    J Am Chem Soc; 2007 Jul 25; 129(29):8978-87. PubMed ID: 17595079
    [Abstract] [Full Text] [Related]

  • 17. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.
    Atkins AJ, Bauer M, Jacob CR.
    Phys Chem Chem Phys; 2013 Jun 07; 15(21):8095-105. PubMed ID: 23579736
    [Abstract] [Full Text] [Related]

  • 18. Resonant inelastic x-ray scattering of CeB6 at the Ce L(1)- and L(3)-edges.
    Liu L, Sham TK, Hayashi H, Kanai N, Takehara Y, Kawamura N, Mizumaki M, Gordon RA.
    J Chem Phys; 2012 May 21; 136(19):194501. PubMed ID: 22612097
    [Abstract] [Full Text] [Related]

  • 19. What spectroscopy reveals concerning the Mn oxidation levels in the oxygen evolving complex of photosystem II: X-ray to near infra-red.
    Pace RJ, Jin L, Stranger R.
    Dalton Trans; 2012 Aug 28; 41(36):11145-60. PubMed ID: 22868409
    [Abstract] [Full Text] [Related]

  • 20. Electronic structure changes in cobalt phthalocyanine due to nanotube encapsulation probed using resonant inelastic X-ray scattering.
    Swarbrick JC, Weng TC, Schulte K, Khlobystov AN, Glatzel P.
    Phys Chem Chem Phys; 2010 Sep 07; 12(33):9693-9. PubMed ID: 20539888
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.