These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


668 related items for PubMed ID: 25879960

  • 1. Endogenous siRNAs and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae.
    Biryukova I, Ye T.
    BMC Genomics; 2015 Apr 10; 16(1):278. PubMed ID: 25879960
    [Abstract] [Full Text] [Related]

  • 2. Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophila melanogaster.
    George P, Jensen S, Pogorelcnik R, Lee J, Xing Y, Brasset E, Vaury C, Sharakhov IV.
    Epigenetics Chromatin; 2015 Apr 10; 8():50. PubMed ID: 26617674
    [Abstract] [Full Text] [Related]

  • 3. The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs.
    Castellano L, Rizzi E, Krell J, Di Cristina M, Galizi R, Mori A, Tam J, De Bellis G, Stebbing J, Crisanti A, Nolan T.
    BMC Genomics; 2015 Feb 19; 16(1):100. PubMed ID: 25766668
    [Abstract] [Full Text] [Related]

  • 4. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories.
    Vandewege MW, Platt RN, Ray DA, Hoffmann FG.
    Genome Biol Evol; 2016 May 09; 8(5):1327-37. PubMed ID: 27060702
    [Abstract] [Full Text] [Related]

  • 5. Conserved Small Nucleotidic Elements at the Origin of Concerted piRNA Biogenesis from Genes and lncRNAs.
    Jensen S, Brasset E, Parey E, Roest Crollius H, Sharakhov IV, Vaury C.
    Cells; 2020 Jun 18; 9(6):. PubMed ID: 32570966
    [Abstract] [Full Text] [Related]

  • 6. Euchromatic transposon insertions trigger production of novel Pi- and endo-siRNAs at the target sites in the drosophila germline.
    Shpiz S, Ryazansky S, Olovnikov I, Abramov Y, Kalmykova A.
    PLoS Genet; 2014 Feb 18; 10(2):e1004138. PubMed ID: 24516406
    [Abstract] [Full Text] [Related]

  • 7. Epigenome-wide analysis of piRNAs in gene-specific DNA methylation.
    Fu A, Jacobs DI, Zhu Y.
    RNA Biol; 2014 Feb 18; 11(10):1301-12. PubMed ID: 25590657
    [Abstract] [Full Text] [Related]

  • 8. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense.
    Kelleher ES, Barbash DA.
    Mol Biol Evol; 2013 Aug 18; 30(8):1816-29. PubMed ID: 23625890
    [Abstract] [Full Text] [Related]

  • 9. Endogenous Viral Element-Derived Piwi-Interacting RNAs (piRNAs) Are Not Required for Production of Ping-Pong-Dependent piRNAs from Diaphorina citri Densovirus.
    Nigg JC, Kuo YW, Falk BW.
    mBio; 2020 Sep 29; 11(5):. PubMed ID: 32994324
    [Abstract] [Full Text] [Related]

  • 10. piRNA and Transposon Dynamics in Drosophila: A Female Story.
    Saint-Leandre B, Capy P, Hua-Van A, Filée J.
    Genome Biol Evol; 2020 Jun 01; 12(6):931-947. PubMed ID: 32396626
    [Abstract] [Full Text] [Related]

  • 11. Transposable element repression using piRNAs, and its relevance to endogenous viral elements (EVEs) and immunity in insects.
    Cerqueira de Araujo A, Huguet E, Herniou EA, Drezen JM, Josse T.
    Curr Opin Insect Sci; 2022 Apr 01; 50():100876. PubMed ID: 35065285
    [Abstract] [Full Text] [Related]

  • 12. Small RNA Pathways That Protect the Somatic Genome.
    Hyun S.
    Int J Mol Sci; 2017 Apr 26; 18(5):. PubMed ID: 28445427
    [Abstract] [Full Text] [Related]

  • 13. Dual-layer transposon repression in heads of Drosophila melanogaster.
    van den Beek M, da Silva B, Pouch J, Ali Chaouche MEA, Carré C, Antoniewski C.
    RNA; 2018 Dec 26; 24(12):1749-1760. PubMed ID: 30217866
    [Abstract] [Full Text] [Related]

  • 14. Developmental piRNA profiles of the invasive vector mosquito Aedes albopictus.
    Liu P, Dong Y, Gu J, Puthiyakunnon S, Wu Y, Chen XG.
    Parasit Vectors; 2016 Sep 29; 9(1):524. PubMed ID: 27686069
    [Abstract] [Full Text] [Related]

  • 15. piRNA clusters as a main source of small RNAs in the animal germline.
    Olovnikov IA, Kalmykova AI.
    Biochemistry (Mosc); 2013 Jun 29; 78(6):572-84. PubMed ID: 23980884
    [Abstract] [Full Text] [Related]

  • 16. An active transposable element, Herves, from the African malaria mosquito Anopheles gambiae.
    Arensburger P, Kim YJ, Orsetti J, Aluvihare C, O'Brochta DA, Atkinson PW.
    Genetics; 2005 Feb 29; 169(2):697-708. PubMed ID: 15545643
    [Abstract] [Full Text] [Related]

  • 17. piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals.
    Gebert D, Ketting RF, Zischler H, Rosenkranz D.
    PLoS One; 2015 Feb 29; 10(5):e0124860. PubMed ID: 25950437
    [Abstract] [Full Text] [Related]

  • 18. piRNAs Are Associated with Diverse Transgenerational Effects on Gene and Transposon Expression in a Hybrid Dysgenic Syndrome of D. virilis.
    Erwin AA, Galdos MA, Wickersheim ML, Harrison CC, Marr KD, Colicchio JM, Blumenstiel JP.
    PLoS Genet; 2015 Aug 29; 11(8):e1005332. PubMed ID: 26241928
    [Abstract] [Full Text] [Related]

  • 19. Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.
    Luo S, Lu J.
    Genomics Proteomics Bioinformatics; 2017 Jun 29; 15(3):164-176. PubMed ID: 28602845
    [Abstract] [Full Text] [Related]

  • 20. Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism.
    Liu X, Majid M, Yuan H, Chang H, Zhao L, Nie Y, He L, Liu X, He X, Huang Y.
    BMC Biol; 2022 Oct 28; 20(1):243. PubMed ID: 36307800
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.