These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 25884912
21. Thermal and Thermoelectric Properties of SAM-Based Molecular Junctions. Park S, Yoon HJ. ACS Appl Mater Interfaces; 2021 Dec 27. PubMed ID: 34961308 [Abstract] [Full Text] [Related]
22. A comparative study of interfacial thermal conductance between metal and semiconductor. Wu K, Zhang L, Wang D, Li F, Zhang P, Sang L, Liao M, Tang K, Ye J, Gu S. Sci Rep; 2022 Nov 19; 12(1):19907. PubMed ID: 36402811 [Abstract] [Full Text] [Related]
23. Weaker bonding can give larger thermal conductance at highly mismatched interfaces. Xu B, Hu S, Hung SW, Shao C, Chandra H, Chen FR, Kodama T, Shiomi J. Sci Adv; 2021 Apr 19; 7(17):. PubMed ID: 33893088 [Abstract] [Full Text] [Related]
24. Cooling dynamics of self-assembled monolayer coating for integrated gold nanocrystals on a glass substrate. Ichiyanagi K, Sekiguchi H, Sato T, Nozawa S, Tomita A, Hoshino M, Adachi S, Sasaki YC. J Synchrotron Radiat; 2015 Jan 19; 22(1):29-33. PubMed ID: 25537585 [Abstract] [Full Text] [Related]
25. Thermal transport in fullerene-based molecular junctions: molecular dynamics simulations. Li J, Wang JJ, Segal D. J Phys Condens Matter; 2024 May 17; 36(32):. PubMed ID: 38688291 [Abstract] [Full Text] [Related]
26. Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (nTP). Niskala JR, Rice WC, Bruce RC, Merkel TJ, Tsui F, You W. J Am Chem Soc; 2012 Jul 25; 134(29):12072-82. PubMed ID: 22720785 [Abstract] [Full Text] [Related]
27. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. Hopkins PE, Baraket M, Barnat EV, Beechem TE, Kearney SP, Duda JC, Robinson JT, Walton SG. Nano Lett; 2012 Feb 08; 12(2):590-5. PubMed ID: 22214512 [Abstract] [Full Text] [Related]
28. Electrical readouts of single and few molecule systems in metal-molecule-metal device structures. Mahapatro AK, Janes DB. J Nanosci Nanotechnol; 2007 Jun 08; 7(6):2134-8. PubMed ID: 17655006 [Abstract] [Full Text] [Related]
29. Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers. Oommen SM, Pisana S. J Phys Condens Matter; 2021 Feb 24; 33(8):085702. PubMed ID: 33207329 [Abstract] [Full Text] [Related]
30. Phononic heat transport in molecular junctions: Quantum effects and vibrational mismatch. Moghaddasi Fereidani R, Segal D. J Chem Phys; 2019 Jan 14; 150(2):024105. PubMed ID: 30646718 [Abstract] [Full Text] [Related]
31. Conductance of molecular junctions formed with silver electrodes. Kim T, Vázquez H, Hybertsen MS, Venkataraman L. Nano Lett; 2013 Jul 10; 13(7):3358-64. PubMed ID: 23731268 [Abstract] [Full Text] [Related]
32. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States. Chen N, Yang K, Wang Z, Zhong B, Wang J, Song J, Li Q, Ni J, Sun F, Liu Y, Fan T. ACS Appl Mater Interfaces; 2023 Jul 19; 15(28):34132-34144. PubMed ID: 37405384 [Abstract] [Full Text] [Related]
33. Charge transport in single Au / alkanedithiol / Au junctions: coordination geometries and conformational degrees of freedom. Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F. J Am Chem Soc; 2008 Jan 09; 130(1):318-26. PubMed ID: 18076172 [Abstract] [Full Text] [Related]
34. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces. Huang D, Ma R, Zhang T, Luo T. ACS Appl Mater Interfaces; 2018 Aug 22; 10(33):28159-28165. PubMed ID: 30056700 [Abstract] [Full Text] [Related]
35. Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations. Andrews DQ, Van Duyne RP, Ratner MA. Nano Lett; 2008 Apr 22; 8(4):1120-6. PubMed ID: 18351748 [Abstract] [Full Text] [Related]
36. Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions. Kim YH, Kim HS, Lee J, Tsutsui M, Kawai T. J Am Chem Soc; 2017 Jun 21; 139(24):8286-8294. PubMed ID: 28537729 [Abstract] [Full Text] [Related]
37. Thermal Characterization of Metal-Oxide Interfaces Using Time-Domain Thermoreflectance with Nanograting Transducers. Kwon H, Perez C, Park W, Asheghi M, Goodson KE. ACS Appl Mater Interfaces; 2021 Dec 08; 13(48):58059-58065. PubMed ID: 34797056 [Abstract] [Full Text] [Related]
38. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces. Lin S, Buehler MJ. Nanotechnology; 2013 Apr 26; 24(16):165702. PubMed ID: 23535514 [Abstract] [Full Text] [Related]
39. Enhancing Thermal Interface Conductance to Graphene Using Ni-Pd Alloy Contacts. Saha D, Yu X, Du Y, Guo Z, Xiong F, Gellman AJ, Malen JA. ACS Appl Mater Interfaces; 2020 Jul 29; 12(30):34317-34322. PubMed ID: 32608964 [Abstract] [Full Text] [Related]
40. Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy. Wold DJ, Frisbie CD. J Am Chem Soc; 2001 Jun 13; 123(23):5549-56. PubMed ID: 11389638 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]