These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
303 related items for PubMed ID: 25889359
1. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Esfandyari Bayat A, Junin R, Derahman MN, Samad AA. Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359 [Abstract] [Full Text] [Related]
2. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Chen G, Liu X, Su C. Langmuir; 2011 May 03; 27(9):5393-402. PubMed ID: 21446737 [Abstract] [Full Text] [Related]
3. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks. Bayat AE, Junin R, Shamshirband S, Chong WT. Sci Rep; 2015 Sep 16; 5():14264. PubMed ID: 26373598 [Abstract] [Full Text] [Related]
4. Enhanced retention of bacteria by TiO2 nanoparticles in saturated porous media. Gentile GJ, Fidalgo de Cortalezzi MM. J Contam Hydrol; 2016 Aug 16; 191():66-75. PubMed ID: 27258326 [Abstract] [Full Text] [Related]
5. Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media. Kumari J, Mathur A, Rajeshwari A, Venkatesan A, S S, Pulimi M, Chandrasekaran N, Nagarajan R, Mukherjee A. PLoS One; 2015 Aug 16; 10(8):e0134796. PubMed ID: 26252479 [Abstract] [Full Text] [Related]
6. Transport of metal oxide nanoparticles in saturated porous media. Ben-Moshe T, Dror I, Berkowitz B. Chemosphere; 2010 Sep 16; 81(3):387-93. PubMed ID: 20678789 [Abstract] [Full Text] [Related]
7. Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media. Lv X, Gao B, Sun Y, Dong S, Wu J, Jiang B, Shi X. Sci Total Environ; 2016 Sep 01; 563-564():987-95. PubMed ID: 26774131 [Abstract] [Full Text] [Related]
8. Deposition and release kinetics of nano-TiO2 in saturated porous media: effects of solution ionic strength and surfactants. Godinez IG, Darnault CJ, Khodadoust AP, Bogdan D. Environ Pollut; 2013 Mar 01; 174():106-13. PubMed ID: 23246754 [Abstract] [Full Text] [Related]
9. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media. Lv X, Sun Y, Ji R, Gao B, Wu J, Lu Q, Jiang H. Water Res; 2018 Sep 15; 141():251-258. PubMed ID: 29800833 [Abstract] [Full Text] [Related]
10. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero JY. Environ Sci Technol; 2010 Jul 01; 44(13):4897-902. PubMed ID: 20524647 [Abstract] [Full Text] [Related]
11. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media. Peng S, Wu D, Ge Z, Tong M, Kim H. Environ Pollut; 2017 Jun 01; 225():141-149. PubMed ID: 28365511 [Abstract] [Full Text] [Related]
12. Nano-SiO2 transport and retention in saturated porous medium: Influence of pH, ionic strength, and natural organics. Ghosh D, Das S, Gahlot VK, Pulimi M, Anand S, Chandrasekaran N, Rai PK, Mukherjee A. J Contam Hydrol; 2022 Jun 01; 248():104029. PubMed ID: 35653834 [Abstract] [Full Text] [Related]
13. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation. Lee J, Bartelt-Hunt SL, Li Y, Gilrein EJ. Chemosphere; 2016 Jul 01; 154():187-193. PubMed ID: 27045636 [Abstract] [Full Text] [Related]
14. Retention and transport of graphene oxide in water-saturated limestone media. Dong S, Sun Y, Gao B, Shi X, Xu H, Wu J, Wu J. Chemosphere; 2017 Aug 01; 180():506-512. PubMed ID: 28431388 [Abstract] [Full Text] [Related]
15. Effect of cation type in mixed Ca-Na systems on transport of sulfonamide antibiotics in saturated limestone porous media. Sun K, Sun Y, Gao B, Xu H, Wu J. Environ Sci Pollut Res Int; 2019 Apr 01; 26(11):11170-11178. PubMed ID: 30793247 [Abstract] [Full Text] [Related]
16. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. Kamrani S, Rezaei M, Kord M, Baalousha M. Water Res; 2018 Apr 15; 133():338-347. PubMed ID: 28864305 [Abstract] [Full Text] [Related]
17. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Godinez IG, Darnault CJ. Water Res; 2011 Jan 15; 45(2):839-51. PubMed ID: 20947120 [Abstract] [Full Text] [Related]
18. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media. Cai L, Tong M, Ma H, Kim H. Environ Sci Technol; 2013 Jun 04; 47(11):5703-10. PubMed ID: 23662648 [Abstract] [Full Text] [Related]
19. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating. Han Y, Hwang G, Kim D, Bradford SA, Lee B, Eom I, Kim PJ, Choi SQ, Kim H. Water Res; 2016 Mar 01; 90():247-257. PubMed ID: 26741396 [Abstract] [Full Text] [Related]
20. Modeling the effects of water content on TiO2 nanoparticles transport in porous media. Toloni I, Lehmann F, Ackerer P. J Contam Hydrol; 2016 Aug 01; 191():76-87. PubMed ID: 27281313 [Abstract] [Full Text] [Related] Page: [Next] [New Search]