These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 25889811

  • 1. Identifying typical physical activity on smartphone with varying positions and orientations.
    Miao F, He Y, Liu J, Li Y, Ayoola I.
    Biomed Eng Online; 2015 Apr 13; 14():32. PubMed ID: 25889811
    [Abstract] [Full Text] [Related]

  • 2. Better physical activity classification using smartphone acceleration sensor.
    Arif M, Bilal M, Kattan A, Ahamed SI.
    J Med Syst; 2014 Sep 13; 38(9):95. PubMed ID: 25000988
    [Abstract] [Full Text] [Related]

  • 3. Validity of smartphone pedometer applications.
    Orr K, Howe HS, Omran J, Smith KA, Palmateer TM, Ma AE, Faulkner G.
    BMC Res Notes; 2015 Nov 30; 8():733. PubMed ID: 26621351
    [Abstract] [Full Text] [Related]

  • 4. Hand, belt, pocket or bag: Practical activity tracking with mobile phones.
    Antos SA, Albert MV, Kording KP.
    J Neurosci Methods; 2014 Jul 15; 231():22-30. PubMed ID: 24091138
    [Abstract] [Full Text] [Related]

  • 5. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN, Elamvazuthi I, Izhar LI, Capi G.
    Sensors (Basel); 2018 Nov 26; 18(12):. PubMed ID: 30486242
    [Abstract] [Full Text] [Related]

  • 6. Classification accuracies of physical activities using smartphone motion sensors.
    Wu W, Dasgupta S, Ramirez EE, Peterson C, Norman GJ.
    J Med Internet Res; 2012 Oct 05; 14(5):e130. PubMed ID: 23041431
    [Abstract] [Full Text] [Related]

  • 7. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M, Bosch S, Incel OD, Scholten H, Havinga PJ.
    Sensors (Basel); 2016 Mar 24; 16(4):426. PubMed ID: 27023543
    [Abstract] [Full Text] [Related]

  • 8. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA, Dobre C, Bajenaru L, Ciobanu RI.
    Sensors (Basel); 2019 Jan 23; 19(3):. PubMed ID: 30678039
    [Abstract] [Full Text] [Related]

  • 9. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.
    Ghose S, Mitra J, Karunanithi M, Dowling J.
    Stud Health Technol Inform; 2015 Jan 23; 214():62-7. PubMed ID: 26210419
    [Abstract] [Full Text] [Related]

  • 10. Registration and Analysis of Acceleration Data to Recognize Physical Activity.
    Kołodziej M, Majkowski A, Tarnowski P, Rak RJ, Gebert D, Sawicki D.
    J Healthc Eng; 2019 Jan 23; 2019():9497151. PubMed ID: 30944719
    [Abstract] [Full Text] [Related]

  • 11. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors.
    Moreira D, Barandas M, Rocha T, Alves P, Santos R, Leonardo R, Vieira P, Gamboa H.
    Sensors (Basel); 2021 Sep 21; 21(18):. PubMed ID: 34577526
    [Abstract] [Full Text] [Related]

  • 12. Development of an automated physical activity classification application for mobile phones.
    Xia Y, Cheung V, Garcia E, Ding H, Karunaithi M.
    Stud Health Technol Inform; 2011 Sep 21; 168():188-94. PubMed ID: 21893928
    [Abstract] [Full Text] [Related]

  • 13. Validity and Reliability of Smartphone Applications for the Assessment of Walking and Running in Normal-weight and Overweight/Obese Young Adults.
    Konharn K, Eungpinichpong W, Promdee K, Sangpara P, Nongharnpitak S, Malila W, Karawa J.
    J Phys Act Health; 2016 Dec 21; 13(12):1333-1340. PubMed ID: 27633618
    [Abstract] [Full Text] [Related]

  • 14. A comparative study of pattern recognition classifiers to predict physical activities using smartphones and wearable body sensors.
    Kouris I, Koutsouris D.
    Technol Health Care; 2012 Dec 21; 20(4):263-75. PubMed ID: 23000559
    [Abstract] [Full Text] [Related]

  • 15. Activity recognition with smartphone support.
    Guiry JJ, van de Ven P, Nelson J, Warmerdam L, Riper H.
    Med Eng Phys; 2014 Jun 21; 36(6):670-5. PubMed ID: 24641812
    [Abstract] [Full Text] [Related]

  • 16. REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking.
    Zhuo S, Sherlock L, Dobbie G, Koh YS, Russello G, Lottridge D.
    Sensors (Basel); 2020 Jan 24; 20(3):. PubMed ID: 31991636
    [Abstract] [Full Text] [Related]

  • 17. A comparison of activity classification in younger and older cohorts using a smartphone.
    Del Rosario MB, Wang K, Wang J, Liu Y, Brodie M, Delbaere K, Lovell NH, Lord SR, Redmond SJ.
    Physiol Meas; 2014 Nov 24; 35(11):2269-86. PubMed ID: 25340659
    [Abstract] [Full Text] [Related]

  • 18. Beyond where to how: a machine learning approach for sensing mobility contexts using smartphone sensors.
    Guinness RE.
    Sensors (Basel); 2015 Apr 28; 15(5):9962-85. PubMed ID: 25928060
    [Abstract] [Full Text] [Related]

  • 19. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR, Sarwar MU, Khan S, Iwendi C, Mittal M, Kumar N.
    Sensors (Basel); 2020 Apr 14; 20(8):. PubMed ID: 32295298
    [Abstract] [Full Text] [Related]

  • 20. Physical activity recognition based on rotated acceleration data using quaternion in sedentary behavior: a preliminary study.
    Shin YE, Choi WH, Shin TM.
    Annu Int Conf IEEE Eng Med Biol Soc; 2014 Apr 14; 2014():4976-8. PubMed ID: 25571109
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.