These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 25892132

  • 1. Comparative proteomic analysis of melon phloem exudates in response to viral infection.
    Serra-Soriano M, Navarro JA, Genoves A, Pallás V.
    J Proteomics; 2015 Jun 21; 124():11-24. PubMed ID: 25892132
    [Abstract] [Full Text] [Related]

  • 2. Distribution and pathway for phloem-dependent movement of Melon necrotic spot virus in melon plants.
    Gosalvez-Bernal B, Genoves A, Navarro JA, Pallas V, Sanchez-Pina MA.
    Mol Plant Pathol; 2008 Jul 21; 9(4):447-61. PubMed ID: 18705860
    [Abstract] [Full Text] [Related]

  • 3. Melon phloem-sap proteome: developmental control and response to viral infection.
    Malter D, Wolf S.
    Protoplasma; 2011 Jan 21; 248(1):217-24. PubMed ID: 20924770
    [Abstract] [Full Text] [Related]

  • 4. The Intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway.
    Genovés A, Navarro JA, Pallás V.
    Mol Plant Microbe Interact; 2010 Mar 21; 23(3):263-72. PubMed ID: 20121448
    [Abstract] [Full Text] [Related]

  • 5. cmv1 is a gate for Cucumber mosaic virus transport from bundle sheath cells to phloem in melon.
    Guiu-Aragonés C, Sánchez-Pina MA, Díaz-Pendón JA, Peña EJ, Heinlein M, Martín-Hernández AM.
    Mol Plant Pathol; 2016 Aug 21; 17(6):973-84. PubMed ID: 26661733
    [Abstract] [Full Text] [Related]

  • 6. Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus.
    Wu L, Han Z, Wang S, Wang X, Sun A, Zu X, Chen Y.
    J Proteomics; 2013 Aug 26; 89():124-40. PubMed ID: 23770298
    [Abstract] [Full Text] [Related]

  • 7. A Distinct, Non-Virion Plant Virus Movement Protein Encoded by a Crinivirus Essential for Systemic Infection.
    Qiao W, Medina V, Kuo YW, Falk BW.
    mBio; 2018 Nov 20; 9(6):. PubMed ID: 30459200
    [Abstract] [Full Text] [Related]

  • 8. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits.
    Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O.
    Proc Natl Acad Sci U S A; 2010 Jul 27; 107(30):13532-7. PubMed ID: 20566864
    [Abstract] [Full Text] [Related]

  • 9. Phloem sap from melon plants contains extracellular vesicles that carry active proteasomes which increase in response to aphid infestation.
    Sánchez-López CM, Soler C, Garzo E, Fereres A, Pérez-Bermúdez P, Marcilla A.
    J Extracell Vesicles; 2024 Oct 27; 13(10):e12517. PubMed ID: 39385682
    [Abstract] [Full Text] [Related]

  • 10. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems.
    Herranz MC, Navarro JA, Sommen E, Pallas V.
    BMC Genomics; 2015 Feb 22; 16(1):117. PubMed ID: 25765188
    [Abstract] [Full Text] [Related]

  • 11. Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection.
    Kappagantu M, Collum TD, Dardick C, Culver JN.
    Annu Rev Virol; 2020 Sep 29; 7(1):351-370. PubMed ID: 32453971
    [Abstract] [Full Text] [Related]

  • 12. Functional analysis of the five melon necrotic spot virus genome-encoded proteins.
    Genovés A, Navarro JA, Pallás V.
    J Gen Virol; 2006 Aug 29; 87(Pt 8):2371-2380. PubMed ID: 16847133
    [Abstract] [Full Text] [Related]

  • 13. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins.
    Navarro JA, Genovés A, Climent J, Saurí A, Martínez-Gil L, Mingarro I, Pallás V.
    Virology; 2006 Aug 29; 356(1-2):57-67. PubMed ID: 16950492
    [Abstract] [Full Text] [Related]

  • 14. Umbravirus-like RNA viruses are capable of independent systemic plant infection in the absence of encoded movement proteins.
    Ying X, Bera S, Liu J, Toscano-Morales R, Jang C, Yang S, Ho J, Simon AE.
    PLoS Biol; 2024 Apr 29; 22(4):e3002600. PubMed ID: 38662792
    [Abstract] [Full Text] [Related]

  • 15. Characterization of phloem-sap transcription profile in melon plants.
    Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S.
    J Exp Bot; 2007 Apr 29; 58(13):3645-56. PubMed ID: 17928373
    [Abstract] [Full Text] [Related]

  • 16. Sieve element occlusion: Interactions with phloem sap-feeding insects. A review.
    Walker GP.
    J Plant Physiol; 2022 Feb 29; 269():153582. PubMed ID: 34953413
    [Abstract] [Full Text] [Related]

  • 17. Effects of Fe deficiency on the protein profile of Brassica napus phloem sap.
    Gutierrez-Carbonell E, Lattanzio G, Albacete A, Rios JJ, Kehr J, Abadía A, Grusak MA, Abadía J, López-Millán AF.
    Proteomics; 2015 Nov 29; 15(22):3835-53. PubMed ID: 26316195
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations.
    Gómez-Aix C, Pascual L, Cañizares J, Sánchez-Pina MA, Aranda MA.
    BMC Genomics; 2016 Jun 07; 17():429. PubMed ID: 27267368
    [Abstract] [Full Text] [Related]

  • 20. Hitchhikers, highway tolls and roadworks: the interactions of plant viruses with the phloem.
    Folimonova SY, Tilsner J.
    Curr Opin Plant Biol; 2018 Jun 07; 43():82-88. PubMed ID: 29476981
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.