These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
354 related items for PubMed ID: 25893690
1. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R. ACS Appl Mater Interfaces; 2015 May 13; 7(18):9399-409. PubMed ID: 25893690 [Abstract] [Full Text] [Related]
2. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. Ambre AH, Katti DR, Katti KS. J Biomed Mater Res A; 2015 Jun 13; 103(6):2077-101. PubMed ID: 25331212 [Abstract] [Full Text] [Related]
3. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. J Nanobiotechnology; 2015 Jun 12; 13():40. PubMed ID: 26065678 [Abstract] [Full Text] [Related]
4. Poly-ε-caprolactone composite scaffolds for bone repair. Di Liddo R, Paganin P, Lora S, Dalzoppo D, Giraudo C, Miotto D, Tasso A, Barbon S, Artico M, Bianchi E, Parnigotto PP, Conconi MT, Grandi C. Int J Mol Med; 2014 Dec 12; 34(6):1537-46. PubMed ID: 25319350 [Abstract] [Full Text] [Related]
5. Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Vishnu Priya M, Sivshanmugam A, Boccaccini AR, Goudouri OM, Sun W, Hwang N, Deepthi S, Nair SV, Jayakumar R. Biomed Mater; 2016 Jun 15; 11(3):035017. PubMed ID: 27305426 [Abstract] [Full Text] [Related]
6. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM. J Tissue Eng Regen Med; 2011 Jun 15; 5(6):e126-35. PubMed ID: 21312338 [Abstract] [Full Text] [Related]
7. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application. Tong SY, Wang Z, Lim PN, Wang W, Thian ES. Mater Sci Eng C Mater Biol Appl; 2017 Jan 01; 70(Pt 2):1149-1155. PubMed ID: 27772716 [Abstract] [Full Text] [Related]
8. Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration. Harikrishnan P, Islam H, Sivasamy A. J Craniofac Surg; 2019 Jan 01; 30(1):265-269. PubMed ID: 30339597 [Abstract] [Full Text] [Related]
10. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. Shalumon KT, Sowmya S, Sathish D, Chennazhi KP, Nair SV, Jayakumar R. J Biomed Nanotechnol; 2013 Mar 01; 9(3):430-40. PubMed ID: 23620999 [Abstract] [Full Text] [Related]
11. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I. Acta Biomater; 2011 Feb 01; 7(2):809-20. PubMed ID: 20849985 [Abstract] [Full Text] [Related]
15. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration. Siqueira IA, Corat MA, Cavalcanti Bd, Ribeiro Neto WA, Martin AA, Bretas RE, Marciano FR, Lobo AO. ACS Appl Mater Interfaces; 2015 May 13; 7(18):9385-98. PubMed ID: 25899398 [Abstract] [Full Text] [Related]