These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 25896388

  • 1. Molybdopterin biosynthesis-Mechanistic studies on a novel MoaA catalyzed insertion of a purine carbon into the ribose of GTP.
    Mehta AP, Abdelwahed SH, Begley TP.
    Biochim Biophys Acta; 2015 Sep; 1854(9):1073-7. PubMed ID: 25896388
    [Abstract] [Full Text] [Related]

  • 2. Molybdopterin biosynthesis: trapping an unusual purine ribose adduct in the MoaA-catalyzed reaction.
    Mehta AP, Abdelwahed SH, Begley TP.
    J Am Chem Soc; 2013 Jul 31; 135(30):10883-5. PubMed ID: 23848839
    [Abstract] [Full Text] [Related]

  • 3. Catalysis of a new ribose carbon-insertion reaction by the molybdenum cofactor biosynthetic enzyme MoaA.
    Mehta AP, Hanes JW, Abdelwahed SH, Hilmey DG, Hänzelmann P, Begley TP.
    Biochemistry; 2013 Feb 19; 52(7):1134-6. PubMed ID: 23286307
    [Abstract] [Full Text] [Related]

  • 4. Molybdopterin biosynthesis: trapping of intermediates for the MoaA-catalyzed reaction using 2'-deoxyGTP and 2'-chloroGTP as substrate analogues.
    Mehta AP, Abdelwahed SH, Xu H, Begley TP.
    J Am Chem Soc; 2014 Jul 30; 136(30):10609-14. PubMed ID: 24955657
    [Abstract] [Full Text] [Related]

  • 5. Binding of 5'-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism.
    Hänzelmann P, Schindelin H.
    Proc Natl Acad Sci U S A; 2006 May 02; 103(18):6829-34. PubMed ID: 16632608
    [Abstract] [Full Text] [Related]

  • 6. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis.
    Hover BM, Tonthat NK, Schumacher MA, Yokoyama K.
    Proc Natl Acad Sci U S A; 2015 May 19; 112(20):6347-52. PubMed ID: 25941396
    [Abstract] [Full Text] [Related]

  • 7. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.
    Iobbi-Nivol C, Leimkühler S.
    Biochim Biophys Acta; 2013 May 19; 1827(8-9):1086-101. PubMed ID: 23201473
    [Abstract] [Full Text] [Related]

  • 8. C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.
    Hover BM, Yokoyama K.
    J Am Chem Soc; 2015 Mar 11; 137(9):3352-9. PubMed ID: 25697423
    [Abstract] [Full Text] [Related]

  • 9. Structures of apo and GTP-bound molybdenum cofactor biosynthesis protein MoaC from Thermus thermophilus HB8.
    Kanaujia SP, Jeyakanthan J, Nakagawa N, Balasubramaniam S, Shinkai A, Kuramitsu S, Yokoyama S, Sekar K.
    Acta Crystallogr D Biol Crystallogr; 2010 Jul 11; 66(Pt 7):821-33. PubMed ID: 20606263
    [Abstract] [Full Text] [Related]

  • 10. Genetic evidence for a molybdopterin-containing tellurate reductase.
    Theisen J, Zylstra GJ, Yee N.
    Appl Environ Microbiol; 2013 May 11; 79(10):3171-5. PubMed ID: 23475618
    [Abstract] [Full Text] [Related]

  • 11. Rearrangement reactions in the biosynthesis of molybdopterin--an NMR study with multiply 13C/15N labelled precursors.
    Rieder C, Eisenreich W, O'Brien J, Richter G, Götze E, Boyle P, Blanchard S, Bacher A, Simon H.
    Eur J Biochem; 1998 Jul 01; 255(1):24-36. PubMed ID: 9692897
    [Abstract] [Full Text] [Related]

  • 12. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans.
    Hänzelmann P, Schindelin H.
    Proc Natl Acad Sci U S A; 2004 Aug 31; 101(35):12870-5. PubMed ID: 15317939
    [Abstract] [Full Text] [Related]

  • 13. Molybdenum cofactor biosynthesis and molybdenum enzymes.
    Schwarz G, Mendel RR.
    Annu Rev Plant Biol; 2006 Aug 31; 57():623-47. PubMed ID: 16669776
    [Abstract] [Full Text] [Related]

  • 14. Lessons From the Studies of a CC Bond Forming Radical SAM Enzyme in Molybdenum Cofactor Biosynthesis.
    Pang H, Yokoyama K.
    Methods Enzymol; 2018 Aug 31; 606():485-522. PubMed ID: 30097104
    [Abstract] [Full Text] [Related]

  • 15. Radical Breakthroughs in Natural Product and Cofactor Biosynthesis.
    Yokoyama K.
    Biochemistry; 2018 Jan 30; 57(4):390-402. PubMed ID: 29072833
    [Abstract] [Full Text] [Related]

  • 16. Biosynthesis and Insertion of the Molybdenum Cofactor.
    Magalon A, Mendel RR.
    EcoSal Plus; 2015 Jan 30; 6(2):. PubMed ID: 26435257
    [Abstract] [Full Text] [Related]

  • 17. Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue.
    Hover BM, Lilla EA, Yokoyama K.
    Biochemistry; 2015 Dec 15; 54(49):7229-36. PubMed ID: 26575208
    [Abstract] [Full Text] [Related]

  • 18. The Role of SufS Is Restricted to Fe-S Cluster Biosynthesis in Escherichia coli.
    Bühning M, Valleriani A, Leimkühler S.
    Biochemistry; 2017 Apr 11; 56(14):1987-2000. PubMed ID: 28323419
    [Abstract] [Full Text] [Related]

  • 19. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis.
    Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K.
    J Am Chem Soc; 2013 May 08; 135(18):7019-32. PubMed ID: 23627491
    [Abstract] [Full Text] [Related]

  • 20. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis.
    Wuebbens MM, Rajagopalan KV.
    J Biol Chem; 2003 Apr 18; 278(16):14523-32. PubMed ID: 12571226
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.