These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 25901959
1. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. Li X, Yang Y, Gao B, Zhang M. PLoS One; 2015; 10(4):e0122884. PubMed ID: 25901959 [Abstract] [Full Text] [Related]
2. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y, Fang Z, Kang Y, Tsang EP. J Hazard Mater; 2014 Jun 30; 275():230-7. PubMed ID: 24880637 [Abstract] [Full Text] [Related]
3. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R. Plant Physiol Biochem; 2018 Jun 30; 127():403-413. PubMed ID: 29679934 [Abstract] [Full Text] [Related]
4. Phytotoxicity of iron-based materials in mung bean: Seed germination tests. Sun Y, Wang W, Zheng F, Zhang S, Wang F, Liu S. Chemosphere; 2020 Jul 30; 251():126432. PubMed ID: 32169709 [Abstract] [Full Text] [Related]
6. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J, Fang Z, Cheng W, Tsang PE, Zhao D. Ecotoxicology; 2016 Aug 30; 25(6):1202-10. PubMed ID: 27207497 [Abstract] [Full Text] [Related]
8. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean. Sun Y, Jing R, Zheng F, Zhang S, Jiao W, Wang F. Chemosphere; 2019 Dec 30; 236():124336. PubMed ID: 31310976 [Abstract] [Full Text] [Related]
11. Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization. Teodoro M, Clemente R, Ferrer-Bustins E, Martínez-Fernández D, Pilar Bernal M, Vítková M, Vítek P, Komárek M. Nanomaterials (Basel); 2020 Aug 05; 10(8):. PubMed ID: 32764467 [Abstract] [Full Text] [Related]
12. Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. Yang CH, Kung TA, Chen PJ. Environ Pollut; 2019 Sep 05; 252(Pt B):1920-1932. PubMed ID: 31227347 [Abstract] [Full Text] [Related]
13. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Pinilla P, Lobo MC. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Sep 05; 49(12):1361-9. PubMed ID: 25072767 [Abstract] [Full Text] [Related]
14. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Rajajayavel SR, Ghoshal S. Water Res; 2015 Jul 01; 78():144-53. PubMed ID: 25935369 [Abstract] [Full Text] [Related]
15. Removal of polycyclic aromatic hydrocarbons from sediments using sodium persulfate activated by temperature and nanoscale zero-valent iron. Chen CF, Binh NT, Chen CW, Dong CD. J Air Waste Manag Assoc; 2015 Apr 01; 65(4):375-83. PubMed ID: 25947207 [Abstract] [Full Text] [Related]
16. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Kim HS, Ahn JY, Kim C, Lee S, Hwang I. Chemosphere; 2014 Oct 01; 113():93-100. PubMed ID: 25065795 [Abstract] [Full Text] [Related]
17. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Ševců A, El-Temsah YS, Filip J, Joner EJ, Bobčíková K, Černík M. Environ Sci Pollut Res Int; 2017 Sep 01; 24(26):21191-21202. PubMed ID: 28733821 [Abstract] [Full Text] [Related]