These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 25904100
21. Epiblast stem cells contribute new insight into pluripotency and gastrulation. Chenoweth JG, McKay RD, Tesar PJ. Dev Growth Differ; 2010 Apr; 52(3):293-301. PubMed ID: 20298258 [Abstract] [Full Text] [Related]
22. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. Montague TG, Schier AF. Elife; 2017 Nov 15; 6():. PubMed ID: 29140251 [Abstract] [Full Text] [Related]
23. Temporal perturbation of histone deacetylase activity reveals a requirement for HDAC1-3 in mesendoderm cell differentiation. Sinniah E, Wu Z, Shen S, Naval-Sanchez M, Chen X, Lim J, Helfer A, Iyer A, Tng J, Lucke AJ, Reid RC, Redd MA, Nefzger CM, Fairlie DP, Palpant NJ. Cell Rep; 2022 May 17; 39(7):110818. PubMed ID: 35584683 [Abstract] [Full Text] [Related]
24. MSX2 mediates entry of human pluripotent stem cells into mesendoderm by simultaneously suppressing SOX2 and activating NODAL signaling. Wu Q, Zhang L, Su P, Lei X, Liu X, Wang H, Lu L, Bai Y, Xiong T, Li D, Zhu Z, Duan E, Jiang E, Feng S, Han M, Xu Y, Wang F, Zhou J. Cell Res; 2015 Dec 17; 25(12):1314-32. PubMed ID: 26427715 [Abstract] [Full Text] [Related]
25. NOTCH activation interferes with cell fate specification in the gastrulating mouse embryo. Souilhol C, Perea-Gomez A, Camus A, Beck-Cormier S, Vandormael-Pournin S, Escande M, Collignon J, Cohen-Tannoudji M. Development; 2015 Nov 01; 142(21):3649-60. PubMed ID: 26534985 [Abstract] [Full Text] [Related]
26. The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development. Nguyen GD, Gokhan S, Molero AE, Yang SM, Kim BJ, Skoultchi AI, Mehler MF. PLoS One; 2014 Nov 01; 9(5):e96858. PubMed ID: 24802750 [Abstract] [Full Text] [Related]
27. Characterization of Histone Modifications Associated with Inactive X-Chromosome in Trophoblast Stem Cells, eXtra-Embryonic Endoderm Cells and in In Vitro Derived Undifferentiated and Differentiated Epiblast Like Stem Cells. Dupont C, Maduro C, Den Braanker H, Boers R, Kurek D, Gribnau J. PLoS One; 2016 Nov 01; 11(12):e0167154. PubMed ID: 27977710 [Abstract] [Full Text] [Related]
28. Overexpression of Nodal promotes differentiation of mouse embryonic stem cells into mesoderm and endoderm at the expense of neuroectoderm formation. Pfendler KC, Catuar CS, Meneses JJ, Pedersen RA. Stem Cells Dev; 2005 Apr 01; 14(2):162-72. PubMed ID: 15910242 [Abstract] [Full Text] [Related]
29. Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires Fibroblast Growth Factor activity. Willems E, Leyns L. Differentiation; 2008 Sep 01; 76(7):745-59. PubMed ID: 18177426 [Abstract] [Full Text] [Related]
30. Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo. Camus A, Perea-Gomez A, Moreau A, Collignon J. Dev Biol; 2006 Jul 15; 295(2):743-55. PubMed ID: 16678814 [Abstract] [Full Text] [Related]
32. miR-335 promotes mesendodermal lineage segregation and shapes a transcription factor gradient in the endoderm. Yang D, Lutter D, Burtscher I, Uetzmann L, Theis FJ, Lickert H. Development; 2014 Feb 15; 141(3):514-25. PubMed ID: 24449834 [Abstract] [Full Text] [Related]
33. Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Rugg-Gunn PJ, Cox BJ, Ralston A, Rossant J. Proc Natl Acad Sci U S A; 2010 Jun 15; 107(24):10783-90. PubMed ID: 20479220 [Abstract] [Full Text] [Related]
34. Major transcriptome re-organisation and abrupt changes in signalling, cell cycle and chromatin regulation at neural differentiation in vivo. Olivera-Martinez I, Schurch N, Li RA, Song J, Halley PA, Das RM, Burt DW, Barton GJ, Storey KG. Development; 2014 Aug 15; 141(16):3266-76. PubMed ID: 25063452 [Abstract] [Full Text] [Related]
35. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status. Legartová S, Kozubek S, Franek M, Zdráhal Z, Lochmanová G, Martinet N, Bártová E. Biochem Cell Biol; 2014 Apr 15; 92(2):85-93. PubMed ID: 24697692 [Abstract] [Full Text] [Related]
36. Histone deacetylase 1 and 3 regulate the mesodermal lineage commitment of mouse embryonic stem cells. Lv W, Guo X, Wang G, Xu Y, Kang J. PLoS One; 2014 Apr 15; 9(11):e113262. PubMed ID: 25412078 [Abstract] [Full Text] [Related]
37. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Illi B, Scopece A, Nanni S, Farsetti A, Morgante L, Biglioli P, Capogrossi MC, Gaetano C. Circ Res; 2005 Mar 18; 96(5):501-8. PubMed ID: 15705964 [Abstract] [Full Text] [Related]
38. Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. Lim CY, Reversade B, Knowles BB, Solter D. Development; 2013 Feb 18; 140(4):853-60. PubMed ID: 23318639 [Abstract] [Full Text] [Related]
39. The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. Zhu Q, Song L, Peng G, Sun N, Chen J, Zhang T, Sheng N, Tang W, Qian C, Qiao Y, Tang K, Han JD, Li J, Jing N. Elife; 2014 Jun 14; 3():. PubMed ID: 24929964 [Abstract] [Full Text] [Related]