These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 25914019
21. Tuning Copper Active Site Composition in Cu-MOR through Co-Cation Modification for Methane Activation. Plessers D, Heyer AJ, Rhoda HM, Bols ML, Solomon EI, Schoonheydt RA, Sels BF. ACS Catal; 2023 Feb 03; 13(3):1906-1915. PubMed ID: 37377676 [Abstract] [Full Text] [Related]
22. Copper(I) complex O(2)-reactivity with a N(3)S thioether ligand: a copper-dioxygen adduct including sulfur ligation, ligand oxygenation, and comparisons with all nitrogen ligand analogues. Lee DH, Hatcher LQ, Vance MA, Sarangi R, Milligan AE, Sarjeant AA, Incarvito CD, Rheingold AL, Hodgson KO, Hedman B, Solomon EI, Karlin KD. Inorg Chem; 2007 Jul 23; 46(15):6056-68. PubMed ID: 17580938 [Abstract] [Full Text] [Related]
23. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Chem Rev; 2018 Mar 14; 118(5):2718-2768. PubMed ID: 29256242 [Abstract] [Full Text] [Related]
24. Spectroscopy and redox chemistry of copper in mordenite. Vanelderen P, Vancauwenbergh J, Tsai ML, Hadt RG, Solomon EI, Schoonheydt RA, Sels BF. Chemphyschem; 2014 Jan 13; 15(1):91-9. PubMed ID: 24399800 [Abstract] [Full Text] [Related]
25. Copper Affects the Location of Zinc in Bimetallic Ion-Exchanged Mordenite. Reule AAC, Shen J, Semagina N. Chemphyschem; 2018 Jun 19; 19(12):1500-1506. PubMed ID: 29575723 [Abstract] [Full Text] [Related]
26. Methane Oxidation over Cu2+ /[CuOH]+ Pairs and Site-Specific Kinetics in Copper Mordenite Revealed by Operando Electron Paramagnetic Resonance and UV/Visible Spectroscopy. Fischer JWA, Brenig A, Klose D, van Bokhoven JA, Sushkevich VL, Jeschke G. Angew Chem Int Ed Engl; 2023 Aug 21; 62(34):e202303574. PubMed ID: 37292054 [Abstract] [Full Text] [Related]
27. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Martini A, Signorile M, Negri C, Kvande K, Lomachenko KA, Svelle S, Beato P, Berlier G, Borfecchia E, Bordiga S. Phys Chem Chem Phys; 2020 Sep 14; 22(34):18950-18963. PubMed ID: 32578608 [Abstract] [Full Text] [Related]
28. Methanol carbonylation over copper-modified mordenite zeolite: A solid-state NMR study. Zhou L, Li S, Qi G, Su Y, Li J, Zheng A, Yi X, Wang Q, Deng F. Solid State Nucl Magn Reson; 2016 Nov 14; 80():1-6. PubMed ID: 27770652 [Abstract] [Full Text] [Related]
29. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate. Drake IJ, Zhang Y, Briggs D, Lim B, Chau T, Bell AT. J Phys Chem B; 2006 Jun 22; 110(24):11654-64. PubMed ID: 16800460 [Abstract] [Full Text] [Related]
30. Speciation and Reactivity Control of Cu-Oxo Clusters via Extraframework Al in Mordenite for Methane Oxidation. Tao L, Khramenkova E, Lee I, Ikuno T, Khare R, Jentys A, Fulton JL, Kolganov AA, Pidko EA, Sanchez-Sanchez M, Lercher JA. J Am Chem Soc; 2023 Aug 16; 145(32):17710-17719. PubMed ID: 37545395 [Abstract] [Full Text] [Related]
31. Thermodynamics of Water-Cationic Species-Framework Guest-Host Interactions within Transition Metal Ion-Exchanged Mordenite Relevant to Selective Anaerobic Oxidation of Methane to Methanol. Zhang X, Cockreham CB, Huang Z, Sun H, Yang C, Marin-Flores OG, Wang B, Guo X, Ha S, Xu H, Wu D. J Phys Chem Lett; 2020 Jun 18; 11(12):4774-4784. PubMed ID: 32452684 [Abstract] [Full Text] [Related]
32. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations. Yumura T, Takeuchi M, Kobayashi H, Kuroda Y. Inorg Chem; 2009 Jan 19; 48(2):508-17. PubMed ID: 19093853 [Abstract] [Full Text] [Related]
33. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI. J Am Chem Soc; 2010 Oct 27; 132(42):14736-8. PubMed ID: 20923156 [Abstract] [Full Text] [Related]
34. Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis. Rhoda HM, Heyer AJ, Snyder BER, Plessers D, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Chem Rev; 2022 Jul 27; 122(14):12207-12243. PubMed ID: 35077641 [Abstract] [Full Text] [Related]
35. Framework Effects on Activation and Functionalisation of Methane in Zinc-Exchanged Zeolites. Shah MA, Raynes S, Apperley DC, Taylor RA. Chemphyschem; 2020 Apr 02; 21(7):673-679. PubMed ID: 31774616 [Abstract] [Full Text] [Related]
36. The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Pappas DK, Martini A, Dyballa M, Kvande K, Teketel S, Lomachenko KA, Baran R, Glatzel P, Arstad B, Berlier G, Lamberti C, Bordiga S, Olsbye U, Svelle S, Beato P, Borfecchia E. J Am Chem Soc; 2018 Nov 14; 140(45):15270-15278. PubMed ID: 30346154 [Abstract] [Full Text] [Related]
37. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. Wijerathne A, Sawyer A, Daya R, Paolucci C. JACS Au; 2024 Jan 22; 4(1):197-215. PubMed ID: 38274255 [Abstract] [Full Text] [Related]