These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


355 related items for PubMed ID: 25916491

  • 1. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.
    Youn HC, Bak SM, Kim MS, Jaye C, Fischer DA, Lee CW, Yang XQ, Roh KC, Kim KB.
    ChemSusChem; 2015 Jun 08; 8(11):1875-84. PubMed ID: 25916491
    [Abstract] [Full Text] [Related]

  • 2. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H, Bhat VV, Gallego NC, Contescu CI.
    ACS Appl Mater Interfaces; 2012 Jun 27; 4(6):3239-46. PubMed ID: 22680779
    [Abstract] [Full Text] [Related]

  • 3. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.
    Nolan H, Mendoza-Sanchez B, Ashok Kumar N, McEvoy N, O'Brien S, Nicolosi V, Duesberg GS.
    Phys Chem Chem Phys; 2014 Feb 14; 16(6):2280-4. PubMed ID: 24418938
    [Abstract] [Full Text] [Related]

  • 4. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors.
    Zhao X, Li M, Dong H, Liu Y, Hu H, Cai Y, Liang Y, Xiao Y, Zheng M.
    ChemSusChem; 2017 Jun 22; 10(12):2626-2634. PubMed ID: 28440020
    [Abstract] [Full Text] [Related]

  • 5. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK, Hong JD.
    Langmuir; 2012 Aug 28; 28(34):12637-46. PubMed ID: 22866750
    [Abstract] [Full Text] [Related]

  • 6. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP, Ramaprabhu S.
    Nanoscale; 2013 Jun 07; 5(11):5109-18. PubMed ID: 23644681
    [Abstract] [Full Text] [Related]

  • 7. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.
    Dubal DP, Chodankar NR, Vinu A, Kim DH, Gomez-Romero P.
    ChemSusChem; 2017 Jul 10; 10(13):2742-2750. PubMed ID: 28523755
    [Abstract] [Full Text] [Related]

  • 8. Enrichment of Pyrrolic Nitrogen by Hole Defects in Nitrogen and Sulfur Co-Doped Graphene Hydrogel for Flexible Supercapacitors.
    Tran NQ, Kang BK, Woo MH, Yoon DH.
    ChemSusChem; 2016 Aug 23; 9(16):2261-8. PubMed ID: 27460556
    [Abstract] [Full Text] [Related]

  • 9. One-step synthesis of free-standing α-Ni(OH)₂ nanosheets on reduced graphene oxide for high-performance supercapacitors.
    Dong B, Zhou H, Liang J, Zhang L, Gao G, Ding S.
    Nanotechnology; 2014 Oct 31; 25(43):435403. PubMed ID: 25299341
    [Abstract] [Full Text] [Related]

  • 10. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y, Xu C, Chen G, Liu Z, Ma M, Xie Q, Zheng N, Yao S.
    ACS Appl Mater Interfaces; 2013 Mar 31; 5(6):2241-8. PubMed ID: 23425031
    [Abstract] [Full Text] [Related]

  • 11. Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications.
    Salunkhe RR, Hsu SH, Wu KC, Yamauchi Y.
    ChemSusChem; 2014 Jun 31; 7(6):1551-6. PubMed ID: 24850493
    [Abstract] [Full Text] [Related]

  • 12. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction.
    Xu J, Dong G, Jin C, Huang M, Guan L.
    ChemSusChem; 2013 Mar 31; 6(3):493-9. PubMed ID: 23404829
    [Abstract] [Full Text] [Related]

  • 13. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.
    Lei Z, Shi F, Lu L.
    ACS Appl Mater Interfaces; 2012 Feb 31; 4(2):1058-64. PubMed ID: 22264121
    [Abstract] [Full Text] [Related]

  • 14. Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide.
    Zhao HB, Wang WD, Lü QF, Lin TT, Lin Q, Yang H.
    Bioresour Technol; 2015 Jan 31; 176():106-11. PubMed ID: 25460990
    [Abstract] [Full Text] [Related]

  • 15. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials.
    Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH.
    Nanoscale; 2013 Jan 07; 5(1):52-71. PubMed ID: 23179249
    [Abstract] [Full Text] [Related]

  • 16. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications.
    Wan D, Yang C, Lin T, Tang Y, Zhou M, Zhong Y, Huang F, Lin J.
    ACS Nano; 2012 Oct 23; 6(10):9068-78. PubMed ID: 22984901
    [Abstract] [Full Text] [Related]

  • 17. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.
    Li Y, Mei Y, Zhang LQ, Wang JH, Liu AR, Zhang YJ, Liu SQ.
    J Colloid Interface Sci; 2015 Oct 01; 455():188-93. PubMed ID: 26070189
    [Abstract] [Full Text] [Related]

  • 18. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J, Zhang LL, Lee S, Oh J, Lee KS, Potts JR, Ji J, Zhao X, Ruoff RS, Park S.
    ACS Nano; 2013 Jan 22; 7(1):19-26. PubMed ID: 23244292
    [Abstract] [Full Text] [Related]

  • 19. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.
    Wen Q, Wang S, Yan J, Cong L, Chen Y, Xi H.
    Bioelectrochemistry; 2014 Feb 22; 95():23-8. PubMed ID: 24239870
    [Abstract] [Full Text] [Related]

  • 20. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation.
    Lee KH, Oh J, Son JG, Kim H, Lee SS.
    ACS Appl Mater Interfaces; 2014 May 14; 6(9):6361-8. PubMed ID: 24597537
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.