These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 25916895

  • 21. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.
    Silveira RL, Stoyanov SR, Kovalenko A, Skaf MS.
    Biomacromolecules; 2016 Aug 08; 17(8):2582-90. PubMed ID: 27301535
    [Abstract] [Full Text] [Related]

  • 22. Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars.
    Gandolfi S, Ottolina G, Consonni R, Riva S, Patel I.
    ChemSusChem; 2014 Jul 08; 7(7):1991-9. PubMed ID: 24753480
    [Abstract] [Full Text] [Related]

  • 23. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).
    Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang CP, Sherman DM.
    Biotechnol Bioeng; 2012 Feb 08; 109(2):390-7. PubMed ID: 21928336
    [Abstract] [Full Text] [Related]

  • 24. Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose.
    Kokot S, Czarnik-Matusewicz B, Ozaki Y.
    Biopolymers; 2002 Feb 08; 67(6):456-69. PubMed ID: 12209453
    [Abstract] [Full Text] [Related]

  • 25. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.
    Chen J, Guan Y, Wang K, Zhang X, Xu F, Sun R.
    Carbohydr Polym; 2015 Sep 05; 128():147-53. PubMed ID: 26005150
    [Abstract] [Full Text] [Related]

  • 26. Mathematical tool from corn stover TGA to determine its composition.
    Freda C, Zimbardi F, Nanna F, Viola E.
    Appl Biochem Biotechnol; 2012 Aug 05; 167(8):2283-94. PubMed ID: 22707184
    [Abstract] [Full Text] [Related]

  • 27. Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass.
    Sathitsuksanoh N, Zhu Z, Wi S, Zhang YH.
    Biotechnol Bioeng; 2011 Mar 05; 108(3):521-9. PubMed ID: 20967803
    [Abstract] [Full Text] [Related]

  • 28. Room temperature dissolving cellulose with a metal salt hydrate-based deep eutectic solvent.
    Tong Z, Meng J, Liu S, Liu Y, Zeng S, Wang L, Xia Q, Yu H.
    Carbohydr Polym; 2021 Nov 15; 272():118473. PubMed ID: 34420732
    [Abstract] [Full Text] [Related]

  • 29. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.
    Tolonen LK, Bergenstråhle-Wohlert M, Sixta H, Wohlert J.
    J Phys Chem B; 2015 Apr 02; 119(13):4739-48. PubMed ID: 25756596
    [Abstract] [Full Text] [Related]

  • 30. Water redispersible dried nanofibrillated cellulose by adding sodium chloride.
    Missoum K, Bras J, Belgacem MN.
    Biomacromolecules; 2012 Dec 10; 13(12):4118-25. PubMed ID: 23140404
    [Abstract] [Full Text] [Related]

  • 31. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification.
    Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T.
    Bioresour Technol; 2016 Jan 10; 199():258-264. PubMed ID: 26253419
    [Abstract] [Full Text] [Related]

  • 32. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings.
    Sathitsuksanoh N, Zhu Z, Ho TJ, Bai MD, Zhang YH.
    Bioresour Technol; 2010 Jul 10; 101(13):4926-9. PubMed ID: 19854047
    [Abstract] [Full Text] [Related]

  • 33. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose.
    Liu C, Wyman CE.
    Bioresour Technol; 2005 Dec 10; 96(18):1978-85. PubMed ID: 16112485
    [Abstract] [Full Text] [Related]

  • 34. Assessment of solvents for cellulose dissolution.
    Ghasemi M, Tsianou M, Alexandridis P.
    Bioresour Technol; 2017 Mar 10; 228():330-338. PubMed ID: 28086174
    [Abstract] [Full Text] [Related]

  • 35. Facile preparation of all-cellulose composites from softwood, hardwood, and agricultural straw cellulose by a simple route of partial dissolution.
    Tang X, Liu G, Zhang H, Gao X, Li M, Zhang S.
    Carbohydr Polym; 2021 Mar 15; 256():117591. PubMed ID: 33483077
    [Abstract] [Full Text] [Related]

  • 36. Facile pulping of lignocellulosic biomass using choline acetate.
    Cheng F, Wang H, Chatel G, Gurau G, Rogers RD.
    Bioresour Technol; 2014 Jul 15; 164():394-401. PubMed ID: 24874879
    [Abstract] [Full Text] [Related]

  • 37. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.
    Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB.
    Biotechnol Prog; 2007 Jul 15; 23(6):1333-9. PubMed ID: 17973399
    [Abstract] [Full Text] [Related]

  • 38. Flow-through pretreatment with strongly acidic electrolyzed water for hemicellulose removal and enzymatic hydrolysis of corn stover.
    Pei H, Liu L, Zhang X, Sun J.
    Bioresour Technol; 2012 Apr 15; 110():292-6. PubMed ID: 22326113
    [Abstract] [Full Text] [Related]

  • 39. Dissolution state of cellulose in aqueous systems. 2. Acidic solvents.
    Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B.
    Carbohydr Polym; 2016 Oct 20; 151():707-715. PubMed ID: 27474617
    [Abstract] [Full Text] [Related]

  • 40. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study.
    Speltini A, Sturini M, Dondi D, Annovazzi E, Maraschi F, Caratto V, Profumo A, Buttafava A.
    Photochem Photobiol Sci; 2014 Oct 20; 13(10):1410-9. PubMed ID: 25051203
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.