These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica. napus L.) and Rice (Oryza sativa L.) Plants. Gao L, Liu M, Wang M, Shen Q, Guo S. Plant Cell Physiol; 2016 Nov; 57(11):2323-2333. PubMed ID: 27519313 [Abstract] [Full Text] [Related]
3. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Wassan GM, Khanzada H, Zhou Q, Mason AS, Keerio AA, Khanzada S, Solangi AM, Faheem M, Fu D, He H. Mol Genet Genomics; 2021 Mar; 296(2):391-408. PubMed ID: 33464396 [Abstract] [Full Text] [Related]
4. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). Zhang F, Xiao X, Xu K, Cheng X, Xie T, Hu J, Wu X. BMC Genomics; 2020 Feb 10; 21(1):139. PubMed ID: 32041524 [Abstract] [Full Text] [Related]
5. Genetic mapping of a lobed-leaf gene associated with salt tolerance in Brassica napus L. Zhang Y, Xu A, Lang L, Wang Y, Liu X, Liang F, Zhang B, Qin M, Dalelhan J, Huang Z. Plant Sci; 2018 Apr 10; 269():75-84. PubMed ID: 29606219 [Abstract] [Full Text] [Related]
6. Discovery of common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits in Brassica napus L. Zhang Y, Zhang Q, Wang H, Tao S, Cao H, Shi Y, Bakirov A, Xu A, Huang Z. Plant Cell Rep; 2023 Jun 10; 42(6):1039-1057. PubMed ID: 37076701 [Abstract] [Full Text] [Related]
9. Natural variation in rosette size under salt stress conditions corresponds to developmental differences between Arabidopsis accessions and allelic variation in the LRR-KISS gene. Julkowska MM, Klei K, Fokkens L, Haring MA, Schranz ME, Testerink C. J Exp Bot; 2016 Apr 10; 67(8):2127-38. PubMed ID: 26873976 [Abstract] [Full Text] [Related]
11. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye J, Yang Y, Chen B, Shi J, Luo M, Zhan J, Wang X, Liu G, Wang H. BMC Genomics; 2017 Jan 11; 18(1):71. PubMed ID: 28077071 [Abstract] [Full Text] [Related]
12. Identification candidate genes for salt resistance through quantitative trait loci-sequencing in Brassica napus L. Zhang Y, Guo Z, Chen X, Li X, Shi Y, Xu L, Yu C, Jing B, Li W, Xu A, Shi X, Li K, Huang Z. J Plant Physiol; 2024 Mar 11; 294():154187. PubMed ID: 38422630 [Abstract] [Full Text] [Related]
14. Evaluation and Exploration of Favorable QTL Alleles for Salt Stress Related Traits in Cotton Cultivars (G. hirsutum L.). Du L, Cai C, Wu S, Zhang F, Hou S, Guo W. PLoS One; 2016 Mar 11; 11(3):e0151076. PubMed ID: 26943816 [Abstract] [Full Text] [Related]
16. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X. Plant Sci; 2016 Jan 11; 242():169-177. PubMed ID: 26566834 [Abstract] [Full Text] [Related]
18. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Wang B, Wu Z, Li Z, Zhang Q, Hu J, Xiao Y, Cai D, Wu J, King GJ, Li H, Liu K. Plant Biotechnol J; 2018 Jul 11; 16(7):1336-1348. PubMed ID: 29265559 [Abstract] [Full Text] [Related]
19. Association mapping for phenological, morphological, and quality traits in canola quality winter rapeseed (Brassica napus L.). Honsdorf N, Becker HC, Ecke W. Genome; 2010 Nov 11; 53(11):899-907. PubMed ID: 21076505 [Abstract] [Full Text] [Related]
20. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Chen H, He H, Yu D. Physiol Plant; 2011 Jan 11; 141(1):11-8. PubMed ID: 20875056 [Abstract] [Full Text] [Related] Page: [Next] [New Search]