These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 25923813

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A scaffold for the Chinese hamster genome.
    Wlaschin KF, Hu WS.
    Biotechnol Bioeng; 2007 Oct 01; 98(2):429-39. PubMed ID: 17390381
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines.
    Rupp O, Becker J, Brinkrolf K, Timmermann C, Borth N, Pühler A, Noll T, Goesmann A.
    PLoS One; 2014 Oct 01; 9(1):e85568. PubMed ID: 24427317
    [Abstract] [Full Text] [Related]

  • 8. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data.
    Monger C, Motheramgari K, McSharry J, Barron N, Clarke C.
    Methods Mol Biol; 2017 Oct 01; 1603():169-186. PubMed ID: 28493130
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells.
    Kelly PS, Clarke C, Costello A, Monger C, Meiller J, Dhiman H, Borth N, Betenbaugh MJ, Clynes M, Barron N.
    Metab Eng; 2017 May 01; 41():11-22. PubMed ID: 28188893
    [Abstract] [Full Text] [Related]

  • 12. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity.
    Dahodwala H, Sharfstein ST.
    Methods Mol Biol; 2017 May 01; 1603():153-168. PubMed ID: 28493129
    [Abstract] [Full Text] [Related]

  • 13. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout.
    Laux H, Romand S, Nuciforo S, Farady CJ, Tapparel J, Buechmann-Moeller S, Sommer B, Oakeley EJ, Bodendorf U.
    Biotechnol Bioeng; 2018 Oct 01; 115(10):2530-2540. PubMed ID: 29777593
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. An 'omics approach towards CHO cell engineering.
    Datta P, Linhardt RJ, Sharfstein ST.
    Biotechnol Bioeng; 2013 May 01; 110(5):1255-71. PubMed ID: 23322664
    [Abstract] [Full Text] [Related]

  • 18. De novo assembly and annotation of the CHOZN® GS-/- genome supports high-throughput genome-scale screening.
    Kretzmer C, Narasimhan RL, Lal RD, Balassi V, Ravellette J, Kotekar Manjunath AK, Koshy JJ, Viano M, Torre S, Zanda VM, Kumravat M, Saldanha KMR, Chandranpillai H, Nihad I, Zhong F, Sun Y, Gustin J, Borgschulte T, Liu J, Razafsky D.
    Biotechnol Bioeng; 2022 Dec 01; 119(12):3632-3646. PubMed ID: 36073082
    [Abstract] [Full Text] [Related]

  • 19. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.
    Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ.
    Curr Opin Biotechnol; 2013 Dec 01; 24(6):1102-7. PubMed ID: 23523260
    [Abstract] [Full Text] [Related]

  • 20. The potential of emerging sub-omics technologies for CHO cell engineering.
    Jerabek T, Keysberg C, Otte K.
    Biotechnol Adv; 2022 Oct 01; 59():107978. PubMed ID: 35569699
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.