These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 25925222
1. Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus. Kumar A, Ting YP. Environ Microbiol; 2015 Nov; 17(11):4459-68. PubMed ID: 25925222 [Abstract] [Full Text] [Related]
3. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. Yang L, Liu Y, Markussen T, Høiby N, Tolker-Nielsen T, Molin S. FEMS Immunol Med Microbiol; 2011 Aug; 62(3):339-47. PubMed ID: 21595754 [Abstract] [Full Text] [Related]
4. Staphylococcus aureus Protein A Mediates Interspecies Interactions at the Cell Surface of Pseudomonas aeruginosa. Armbruster CR, Wolter DJ, Mishra M, Hayden HS, Radey MC, Merrihew G, MacCoss MJ, Burns J, Wozniak DJ, Parsek MR, Hoffman LR. mBio; 2016 May 24; 7(3):. PubMed ID: 27222468 [Abstract] [Full Text] [Related]
5. Intragenic Antimicrobial Peptide Hs02 Hampers the Proliferation of Single- and Dual-Species Biofilms of P. aeruginosa and S. aureus: A Promising Agent for Mitigation of Biofilm-Associated Infections. Bessa LJ, Manickchand JR, Eaton P, Leite JRSA, Brand GD, Gameiro P. Int J Mol Sci; 2019 Jul 23; 20(14):. PubMed ID: 31340580 [Abstract] [Full Text] [Related]
6. Effect of sub-inhibitory antibacterial stress on bacterial surface properties and biofilm formation. Kumar A, Ting YP. Colloids Surf B Biointerfaces; 2013 Nov 01; 111():747-54. PubMed ID: 23934235 [Abstract] [Full Text] [Related]
7. Efficacy of Lytic Phage Cocktails on Staphylococcus aureus and Pseudomonas aeruginosa in Mixed-Species Planktonic Cultures and Biofilms. Kifelew LG, Warner MS, Morales S, Thomas N, Gordon DL, Mitchell JG, Speck PG. Viruses; 2020 May 18; 12(5):. PubMed ID: 32443619 [Abstract] [Full Text] [Related]
8. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Borges A, Saavedra MJ, Simões M. Biofouling; 2012 May 18; 28(7):755-67. PubMed ID: 22823343 [Abstract] [Full Text] [Related]
9. Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms. Cendra MDM, Blanco-Cabra N, Pedraz L, Torrents E. Sci Rep; 2019 Nov 08; 9(1):16284. PubMed ID: 31705015 [Abstract] [Full Text] [Related]
10. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GDÁ, Hübner SO, Fischer G. Microb Pathog; 2017 Nov 08; 112():57-62. PubMed ID: 28943153 [Abstract] [Full Text] [Related]
11. Enhanced production of exopolysaccharide matrix and biofilm by a menadione-auxotrophic Staphylococcus aureus small-colony variant. Singh R, Ray P, Das A, Sharma M. J Med Microbiol; 2010 May 08; 59(Pt 5):521-527. PubMed ID: 20110391 [Abstract] [Full Text] [Related]
12. Influence of Peganum harmala peptides on the transcriptional activity of biofilm related genes in sensitive and resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. Mirza R, Azeem M, Qaisar U. Pak J Pharm Sci; 2019 Sep 08; 32(5(Supplementary)):2341-2345. PubMed ID: 31894064 [Abstract] [Full Text] [Related]
13. The effect of Staphylococcus aureus on the antibiotic resistance and pathogenicity of Pseudomonas aeruginosa based on crc gene as a metabolism regulator: An in vitro wound model study. Dehbashi S, Pourmand MR, Alikhani MY, Asl SS, Arabestani MR. Infect Genet Evol; 2020 Nov 08; 85():104509. PubMed ID: 32835876 [Abstract] [Full Text] [Related]
14. Atomic force microscopy in biofilm study. Chatterjee S, Biswas N, Datta A, Dey R, Maiti P. Microscopy (Oxf); 2014 Aug 08; 63(4):269-78. PubMed ID: 24793174 [Abstract] [Full Text] [Related]
15. Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. Mitchell G, Séguin DL, Asselin AE, Déziel E, Cantin AM, Frost EH, Michaud S, Malouin F. BMC Microbiol; 2010 Jan 30; 10():33. PubMed ID: 20113519 [Abstract] [Full Text] [Related]
16. The Effect of Lysozyme on Reducing Biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: An In Vitro Examination. Hukić M, Seljmo D, Ramovic A, Ibrišimović MA, Dogan S, Hukic J, Bojic EF. Microb Drug Resist; 2018 May 30; 24(4):353-358. PubMed ID: 28922066 [Abstract] [Full Text] [Related]
17. Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance In Vitro. Cardile AP, Sanchez CJ, Samberg ME, Romano DR, Hardy SK, Wenke JC, Murray CK, Akers KS. BMC Res Notes; 2014 Jul 17; 7():457. PubMed ID: 25034276 [Abstract] [Full Text] [Related]
18. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Abdallah M, Khelissa O, Ibrahim A, Benoliel C, Heliot L, Dhulster P, Chihib NE. Int J Food Microbiol; 2015 Dec 02; 214():38-47. PubMed ID: 26233298 [Abstract] [Full Text] [Related]
19. Modulation of S. aureus and P. aeruginosa biofilm: an in vitro study with new coumarin derivatives. Das T, Das MC, Das A, Bhowmik S, Sandhu P, Akhter Y, Bhattacharjee S, De UC. World J Microbiol Biotechnol; 2018 Nov 08; 34(11):170. PubMed ID: 30406882 [Abstract] [Full Text] [Related]
20. Betacyanin-inhibited biofilm formation of co-culture of Staphylococcus aureus and Pseudomonas aeruginosa on different polymer surfaces. Yong YY, Ong MWK, Dykes G, Choo WS. FEMS Microbiol Lett; 2021 Jan 26; 368(1):. PubMed ID: 33338235 [Abstract] [Full Text] [Related] Page: [Next] [New Search]