These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


681 related items for PubMed ID: 25929128

  • 1. [Reprogramming of somatic cells. Problems and solutions].
    Schneider TA, Fishman VS, Liskovykh MA, Ponamartsev SV, Serov OL, Tomilin AN, Alenina N.
    Tsitologiia; 2014; 56(12):869-80. PubMed ID: 25929128
    [Abstract] [Full Text] [Related]

  • 2. MyoD gene suppression by Oct4 is required for reprogramming in myoblasts to produce induced pluripotent stem cells.
    Watanabe S, Hirai H, Asakura Y, Tastad C, Verma M, Keller C, Dutton JR, Asakura A.
    Stem Cells; 2011 Mar; 29(3):505-16. PubMed ID: 21425413
    [Abstract] [Full Text] [Related]

  • 3. Reprogramming somatic cells into pluripotent stem cells using miRNAs.
    Anokye-Danso F.
    Methods Mol Biol; 2014 Mar; 1150():273-81. PubMed ID: 24744006
    [Abstract] [Full Text] [Related]

  • 4. Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation.
    Masip M, Veiga A, Izpisúa Belmonte JC, Simón C.
    Mol Hum Reprod; 2010 Nov; 16(11):856-68. PubMed ID: 20616150
    [Abstract] [Full Text] [Related]

  • 5. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion.
    Ebrahimi B.
    Tissue Cell; 2016 Oct; 48(5):475-87. PubMed ID: 27514850
    [Abstract] [Full Text] [Related]

  • 6. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
    Sadahiro T, Yamanaka S, Ieda M.
    Circ Res; 2015 Apr 10; 116(8):1378-91. PubMed ID: 25858064
    [Abstract] [Full Text] [Related]

  • 7. Cell fate plug and play: direct reprogramming and induced pluripotency.
    Chambers SM, Studer L.
    Cell; 2011 Jun 10; 145(6):827-30. PubMed ID: 21663788
    [Abstract] [Full Text] [Related]

  • 8. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
    Xie M, Tang S, Li K, Ding S.
    Acc Chem Res; 2017 May 16; 50(5):1202-1211. PubMed ID: 28453285
    [Abstract] [Full Text] [Related]

  • 9. Transcription factor-mediated reprogramming: epigenetics and therapeutic potential.
    Firas J, Liu X, Lim SM, Polo JM.
    Immunol Cell Biol; 2015 Mar 16; 93(3):284-9. PubMed ID: 25643615
    [Abstract] [Full Text] [Related]

  • 10. Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells.
    Tiemann U, Sgodda M, Warlich E, Ballmaier M, Schöler HR, Schambach A, Cantz T.
    Cytometry A; 2011 Jun 16; 79(6):426-35. PubMed ID: 21548079
    [Abstract] [Full Text] [Related]

  • 11. Transdifferentiation of mouse fibroblasts and hepatocytes to functional neurons.
    Marro S, Yang N.
    Methods Mol Biol; 2014 Jun 16; 1150():237-46. PubMed ID: 24744003
    [Abstract] [Full Text] [Related]

  • 12. Concise review: Oct4 and more: the reprogramming expressway.
    Sterneckert J, Höing S, Schöler HR.
    Stem Cells; 2012 Jan 16; 30(1):15-21. PubMed ID: 22009686
    [Abstract] [Full Text] [Related]

  • 13. Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages.
    Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Gualini S, Cavallini C, Fontani V, Ventura C.
    Cell Transplant; 2013 Jan 16; 22(7):1227-35. PubMed ID: 23057961
    [Abstract] [Full Text] [Related]

  • 14. Direct reprogramming into desired cell types by defined factors.
    Ieda M.
    Keio J Med; 2013 Jan 16; 62(3):74-82. PubMed ID: 23801083
    [Abstract] [Full Text] [Related]

  • 15. Cell divisions are not essential for the direct conversion of fibroblasts into neuronal cells.
    Fishman VS, Shnayder TA, Orishchenko KE, Bader M, Alenina N, Serov OL.
    Cell Cycle; 2015 Jan 16; 14(8):1188-96. PubMed ID: 25695848
    [Abstract] [Full Text] [Related]

  • 16. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.
    Biswas D, Jiang P.
    Int J Mol Sci; 2016 Feb 06; 17(2):226. PubMed ID: 26861316
    [Abstract] [Full Text] [Related]

  • 17. [Genetic Cell Reprogramming: A New Technology for Basic Research and Applied Usage].
    Bogomazova AN, Vassina EM, Kiselev SI, Lagarkova MA, Lebedeva OS, Nekrasov ED, Panova AV, Philonenko ES, Khomyakova EA, Tskhovrebova LV, Chestkov IV, Shutova MV.
    Genetika; 2015 Apr 06; 51(4):466-78. PubMed ID: 26087622
    [Abstract] [Full Text] [Related]

  • 18. Direct reprogramming of fibroblasts into neural stem cells by defined factors.
    Han DW, Tapia N, Hermann A, Hemmer K, Höing S, Araúzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Schöler HR.
    Cell Stem Cell; 2012 Apr 06; 10(4):465-72. PubMed ID: 22445517
    [Abstract] [Full Text] [Related]

  • 19. Reprogramming cell fates: insights from combinatorial approaches.
    Pereira CF, Lemischka IR, Moore K.
    Ann N Y Acad Sci; 2012 Aug 06; 1266():7-17. PubMed ID: 22901251
    [Abstract] [Full Text] [Related]

  • 20. Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc.
    Tavernier G, Wolfrum K, Demeester J, De Smedt SC, Adjaye J, Rejman J.
    Biomaterials; 2012 Jan 06; 33(2):412-7. PubMed ID: 21993235
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.