These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1097 related items for PubMed ID: 25933022
1. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1. Leodolter J, Warweg J, Weber-Ban E. PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022 [Abstract] [Full Text] [Related]
2. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, Baker TA. Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567 [Abstract] [Full Text] [Related]
3. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Thibault G, Yudin J, Wong P, Tsitrin V, Sprangers R, Zhao R, Houry WA. Proc Natl Acad Sci U S A; 2006 Nov 21; 103(47):17724-9. PubMed ID: 17090685 [Abstract] [Full Text] [Related]
4. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR. J Biol Chem; 2001 Aug 03; 276(31):29420-9. PubMed ID: 11346657 [Abstract] [Full Text] [Related]
5. Mycobacterium tuberculosis ClpC1: characterization and role of the N-terminal domain in its function. Kar NP, Sikriwal D, Rath P, Choudhary RK, Batra JK. FEBS J; 2008 Dec 03; 275(24):6149-58. PubMed ID: 19016865 [Abstract] [Full Text] [Related]
6. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry. Maglica Z, Kolygo K, Weber-Ban E. Structure; 2009 Apr 15; 17(4):508-16. PubMed ID: 19368884 [Abstract] [Full Text] [Related]
13. [Bacterial ClpX protease structure and function--a review]. Wang L, Xie J. Wei Sheng Wu Xue Bao; 2010 Oct 15; 50(10):1281-7. PubMed ID: 21141460 [Abstract] [Full Text] [Related]
14. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Martin A, Baker TA, Sauer RT. Mol Cell; 2008 Feb 29; 29(4):441-50. PubMed ID: 18313382 [Abstract] [Full Text] [Related]
15. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. Thibault G, Tsitrin Y, Davidson T, Gribun A, Houry WA. EMBO J; 2006 Jul 26; 25(14):3367-76. PubMed ID: 16810315 [Abstract] [Full Text] [Related]
16. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Martin A, Baker TA, Sauer RT. Nat Struct Mol Biol; 2008 Nov 26; 15(11):1147-51. PubMed ID: 18931677 [Abstract] [Full Text] [Related]
17. The unfoldase ClpC1 of Mycobacterium tuberculosis regulates the expression of a distinct subset of proteins having intrinsically disordered termini. Lunge A, Gupta R, Choudhary E, Agarwal N. J Biol Chem; 2020 Jul 10; 295(28):9455-9473. PubMed ID: 32409584 [Abstract] [Full Text] [Related]
20. Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site. Szyk A, Maurizi MR. J Struct Biol; 2006 Oct 10; 156(1):165-74. PubMed ID: 16682229 [Abstract] [Full Text] [Related] Page: [Next] [New Search]