These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 25942689

  • 21. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.
    Courchesne F, Turmel MC, Cloutier-Hurteau B, Constantineau S, Munro L, Labrecque M.
    Int J Phytoremediation; 2017 Jun 03; 19(6):545-554. PubMed ID: 27996300
    [Abstract] [Full Text] [Related]

  • 22. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials.
    Watson C, Pulford ID, Riddell-Black D.
    Int J Phytoremediation; 2003 Jun 03; 5(4):351-65. PubMed ID: 14750562
    [Abstract] [Full Text] [Related]

  • 23. Is the harvest of Salix and Populus clones in the growing season truly advantageous for the phytoextraction of metals from a long-term perspective?
    Kubátová P, Žilinčíková N, Száková J, Zemanová V, Tlustoš P.
    Sci Total Environ; 2022 Sep 10; 838(Pt 4):156630. PubMed ID: 35697216
    [Abstract] [Full Text] [Related]

  • 24. A multiple-level study of metal tolerance in Salix fragilis and Salix aurita clones.
    Evlard A, Sergeant K, Printz B, Guignard C, Renaut J, Campanella B, Paul R, Hausman JF.
    J Proteomics; 2014 Apr 14; 101():113-29. PubMed ID: 24530377
    [Abstract] [Full Text] [Related]

  • 25. Effects of summer and winter harvesting on element phytoextraction efficiency of Salix and Populus clones planted on contaminated soil.
    Kubátová P, Száková J, Břendová K, Kroulíková-Vondráčková S, Mercl F, Tlustoš P.
    Int J Phytoremediation; 2018 Apr 16; 20(5):499-506. PubMed ID: 29608377
    [Abstract] [Full Text] [Related]

  • 26. Evaluating phytoextraction efficiency of two high-biomass crops after soil amendment and inoculation with rhizobacterial strains.
    Vanessa ÁL, Ángeles PF, Sergio R, Beatriz RG, Rolf H, Markus P, Susan KP.
    Environ Sci Pollut Res Int; 2017 Mar 16; 24(8):7591-7606. PubMed ID: 28120224
    [Abstract] [Full Text] [Related]

  • 27. The potential of willow for remediation of heavy metal polluted calcareous urban soils.
    Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK.
    Environ Pollut; 2009 Mar 16; 157(3):931-7. PubMed ID: 19062141
    [Abstract] [Full Text] [Related]

  • 28. Phytoremediation prospects of willow stands on contaminated sediment: a field trial.
    Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FM, Lust N.
    Environ Pollut; 2003 Mar 16; 126(2):275-82. PubMed ID: 12927498
    [Abstract] [Full Text] [Related]

  • 29. Urban soil phytomanagement for Zn and Cd in situ removal, greening, and Zn-rich biomass production taking care of snail exposure.
    Grignet A, de Vaufleury A, Papin A, Bert V.
    Environ Sci Pollut Res Int; 2020 Jan 16; 27(3):3187-3201. PubMed ID: 31838670
    [Abstract] [Full Text] [Related]

  • 30. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment.
    Mertens J, Vervaeke P, Meers E, Tack FM.
    Environ Sci Technol; 2006 Mar 15; 40(6):1962-8. PubMed ID: 16570622
    [Abstract] [Full Text] [Related]

  • 31. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.
    Wang FY, Lin XG, Yin R.
    Environ Pollut; 2007 May 15; 147(1):248-55. PubMed ID: 17011687
    [Abstract] [Full Text] [Related]

  • 32. Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment.
    Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J.
    Microb Biotechnol; 2013 May 15; 6(3):288-99. PubMed ID: 23425076
    [Abstract] [Full Text] [Related]

  • 33. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.
    Marques AP, Moreira H, Franco AR, Rangel AO, Castro PM.
    Chemosphere; 2013 Jun 15; 92(1):74-83. PubMed ID: 23582407
    [Abstract] [Full Text] [Related]

  • 34. Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals.
    Złoch M, Kowalkowski T, Tyburski J, Hrynkiewicz K.
    Int J Phytoremediation; 2017 Dec 02; 19(12):1150-1164. PubMed ID: 28532161
    [Abstract] [Full Text] [Related]

  • 35. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.
    Xue K, van Nostrand JD, Vangronsveld J, Witters N, Janssen JO, Kumpiene J, Siebielec G, Galazka R, Giagnoni L, Arenella M, Zhou JZ, Renella G.
    Chemosphere; 2015 Nov 02; 138():469-77. PubMed ID: 26183942
    [Abstract] [Full Text] [Related]

  • 36. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction.
    Weyens N, Gielen M, Beckers B, Boulet J, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J.
    Plant Biol (Stuttg); 2014 Sep 02; 16(5):988-96. PubMed ID: 24400887
    [Abstract] [Full Text] [Related]

  • 37. Differences in uptake and accumulation of copper and zinc by Salix clones under flooded versus non-flooded conditions.
    Yang W, Zhao F, Wang Y, Ding Z, Yang X, Zhu Z.
    Chemosphere; 2020 Feb 02; 241():125059. PubMed ID: 31606571
    [Abstract] [Full Text] [Related]

  • 38. Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud.
    Iqbal M, Puschenreiter M, Oburger E, Santner J, Wenzel WW.
    Environ Pollut; 2012 Nov 02; 170():222-31. PubMed ID: 22842051
    [Abstract] [Full Text] [Related]

  • 39. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically.
    McBride MB, Martinez CE, Kim B.
    Int J Phytoremediation; 2016 Dec 02; 18(12):1178-86. PubMed ID: 27216699
    [Abstract] [Full Text] [Related]

  • 40. Interclonal variation of heavy metal interactions in Salix viminalis.
    Landberg T, Greger M.
    Environ Toxicol Chem; 2002 Dec 02; 21(12):2669-74. PubMed ID: 12463563
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.