These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


562 related items for PubMed ID: 25946514

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R, Celik Y, Davies PL, Braslavsky I.
    J R Soc Interface; 2014 Sep 06; 11(98):20140526. PubMed ID: 25008081
    [Abstract] [Full Text] [Related]

  • 5. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom CS, Liu XY, Jia Z.
    Biophys J; 2005 Oct 06; 89(4):2618-27. PubMed ID: 16055536
    [Abstract] [Full Text] [Related]

  • 6. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L, Ramakrishnan V.
    Mol Inform; 2016 Jul 06; 35(6-7):268-77. PubMed ID: 27492241
    [Abstract] [Full Text] [Related]

  • 7. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL.
    Cryobiology; 2006 Oct 06; 53(2):229-39. PubMed ID: 16887111
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K, Wasserman SS, Jeronimo PS, Graham LA, Davies PL.
    FEBS J; 2016 Apr 06; 283(8):1504-15. PubMed ID: 26896764
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL.
    Cryobiology; 2010 Dec 06; 61(3):327-34. PubMed ID: 20977900
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL.
    J Mol Biol; 2012 Mar 09; 416(5):713-24. PubMed ID: 22306740
    [Abstract] [Full Text] [Related]

  • 18. Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces.
    Pertaya N, Marshall CB, DiPrinzio CL, Wilen L, Thomson ES, Wettlaufer JS, Davies PL, Braslavsky I.
    Biophys J; 2007 May 15; 92(10):3663-73. PubMed ID: 17325008
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK.
    Proc Natl Acad Sci U S A; 2016 Apr 05; 113(14):3740-5. PubMed ID: 26936953
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.