These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


440 related items for PubMed ID: 25947215

  • 1. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.
    Jing H, Wang X, Wang WN, Biswas P.
    J Air Waste Manag Assoc; 2015 Apr; 65(4):455-65. PubMed ID: 25947215
    [Abstract] [Full Text] [Related]

  • 2. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH, Yan NQ, Liu ZR, Qu Z, Wang HP, Chang SG, Miller C.
    Environ Sci Technol; 2007 Feb 15; 41(4):1405-12. PubMed ID: 17593749
    [Abstract] [Full Text] [Related]

  • 3. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S, Duan Y, Chen L, Li Y, Yao T, Liu S, Liu M, Lu J.
    Environ Pollut; 2017 Oct 15; 229():863-870. PubMed ID: 28779897
    [Abstract] [Full Text] [Related]

  • 4. Gas-phase elemental mercury removal in a simulated combustion flue gas using TiO2 with fluorescent light.
    Cho JH, Lee TG, Eom Y.
    J Air Waste Manag Assoc; 2012 Oct 15; 62(10):1208-13. PubMed ID: 23155867
    [Abstract] [Full Text] [Related]

  • 5. Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator.
    Li X, Zhou C, Li J, Lu S, Yan J.
    Environ Sci Pollut Res Int; 2019 May 15; 26(13):12798-12806. PubMed ID: 30887449
    [Abstract] [Full Text] [Related]

  • 6. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H, Xu Z, Fan M, Bland AE, Judkins RR.
    J Hazard Mater; 2007 Jul 19; 146(1-2):1-11. PubMed ID: 17544578
    [Abstract] [Full Text] [Related]

  • 7. [Removal of NO and Hg0 in flue gas using alkaline absorption enhanced by non-thermal plasma].
    Luo HJ, Zhu TL, Wang MY.
    Huan Jing Ke Xue; 2010 Jun 19; 31(6):1682-7. PubMed ID: 20698290
    [Abstract] [Full Text] [Related]

  • 8. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H, Wu CY, Li Y, Zhang J.
    Environ Sci Technol; 2011 Sep 01; 45(17):7394-400. PubMed ID: 21770402
    [Abstract] [Full Text] [Related]

  • 9. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.
    Yan N, Chen W, Chen J, Qu Z, Guo Y, Yang S, Jia J.
    Environ Sci Technol; 2011 Jul 01; 45(13):5725-30. PubMed ID: 21662986
    [Abstract] [Full Text] [Related]

  • 10. Emission characteristics and removal of heavy metals in flue gas: a case study in waste incineration and coal-fired power plants.
    Zhao B, Liu W, Wang X, Lu J.
    Environ Sci Pollut Res Int; 2024 Feb 01; 31(6):8883-8897. PubMed ID: 38180667
    [Abstract] [Full Text] [Related]

  • 11. The fate and behavior of mercury in coal-fired power plants.
    Meij R, Vredenbregt LH, te Winkel H.
    J Air Waste Manag Assoc; 2002 Aug 01; 52(8):912-7. PubMed ID: 12184689
    [Abstract] [Full Text] [Related]

  • 12. Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China.
    Liu S, Chen J, Cao Y, Yang H, Chen C, Jia W.
    J Air Waste Manag Assoc; 2019 Feb 01; 69(2):234-245. PubMed ID: 30396327
    [Abstract] [Full Text] [Related]

  • 13. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process.
    Ko KB, Byun Y, Cho M, Namkung W, Shin DN, Koh DJ, Kim KT.
    Chemosphere; 2008 Apr 01; 71(9):1674-82. PubMed ID: 18313101
    [Abstract] [Full Text] [Related]

  • 14. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW, Srivastava RK, Ghorishi SB, Hastings TW, Stevens FM.
    J Air Waste Manag Assoc; 2004 Dec 01; 54(12):1560-6. PubMed ID: 15648394
    [Abstract] [Full Text] [Related]

  • 15. Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant.
    Mylläri F, Pirjola L, Lihavainen H, Asmi E, Saukko E, Laurila T, Vakkari V, O'Connor E, Rautiainen J, Häyrinen A, Niemelä V, Maunula J, Hillamo R, Keskinen J, Rönkkö T.
    J Air Waste Manag Assoc; 2019 Jan 01; 69(1):97-108. PubMed ID: 30204539
    [Abstract] [Full Text] [Related]

  • 16. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.
    Li Y, Suriyawong A, Daukoru M, Zhuang Y, Biswas P.
    J Air Waste Manag Assoc; 2009 May 01; 59(5):553-9. PubMed ID: 19583155
    [Abstract] [Full Text] [Related]

  • 17. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.
    Clack HL.
    J Air Waste Manag Assoc; 2017 Aug 01; 67(8):881-888. PubMed ID: 28287914
    [Abstract] [Full Text] [Related]

  • 18. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.
    Li H, Zhang W, Wang J, Yang Z, Li L, Shih K.
    Waste Manag; 2018 Apr 01; 74():253-259. PubMed ID: 29229180
    [Abstract] [Full Text] [Related]

  • 19. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.
    Mokhtar MM, Taib RM, Hassim MH.
    J Air Waste Manag Assoc; 2014 Aug 01; 64(8):867-78. PubMed ID: 25185389
    [Abstract] [Full Text] [Related]

  • 20. Cyclone as a precleaner to ESP--a need for Indian coal based thermal power plants.
    George KV, Manjunath S, Rao CV, Bopche AM.
    Environ Technol; 2003 Nov 01; 24(11):1425-30. PubMed ID: 14733395
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.