These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
243 related items for PubMed ID: 25952119
1. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. Zhou Z, Wang C, Xu H, Chen Z, Cai H. J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1073-82. PubMed ID: 25952119 [Abstract] [Full Text] [Related]
2. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Lindner SN, Seibold GM, Krämer R, Wendisch VF. Bioeng Bugs; 2011 Jul; 2(5):291-5. PubMed ID: 22008639 [Abstract] [Full Text] [Related]
3. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases. Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. Appl Environ Microbiol; 2011 Jun; 77(11):3571-81. PubMed ID: 21478323 [Abstract] [Full Text] [Related]
4. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S. Appl Microbiol Biotechnol; 2015 Mar; 99(6):2741-50. PubMed ID: 25549619 [Abstract] [Full Text] [Related]
5. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S. Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034 [Abstract] [Full Text] [Related]
6. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Ikeda M. Appl Microbiol Biotechnol; 2012 Dec; 96(5):1191-200. PubMed ID: 23081775 [Abstract] [Full Text] [Related]
7. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C, Zhou Z, Cai H, Chen Z, Xu H. J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352 [Abstract] [Full Text] [Related]
8. Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM. Microbiology (Reading); 2015 Sep; 161(9):1830-1843. PubMed ID: 26296766 [Abstract] [Full Text] [Related]
9. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTSGlc) genes. Xu J, Zhang J, Liu D, Zhang W. Can J Microbiol; 2016 Dec; 62(12):983-992. PubMed ID: 27718589 [Abstract] [Full Text] [Related]
10. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. Gaigalat L, Schlüter JP, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J. BMC Mol Biol; 2007 Nov 15; 8():104. PubMed ID: 18005413 [Abstract] [Full Text] [Related]
11. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM. Appl Environ Microbiol; 2013 Apr 15; 79(8):2588-95. PubMed ID: 23396334 [Abstract] [Full Text] [Related]
12. Rewiring the Central Metabolic Pathway for High-Yield l-Serine Production in Corynebacterium glutamicum by Using Glucose. Zhang X, Lai L, Xu G, Zhang X, Shi J, Koffas MAG, Xu Z. Biotechnol J; 2019 Jun 15; 14(6):e1800497. PubMed ID: 30791233 [Abstract] [Full Text] [Related]
13. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2008 Dec 15; 81(3):459-64. PubMed ID: 18777022 [Abstract] [Full Text] [Related]
15. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production. Xu JZ, Yu HB, Han M, Liu LM, Zhang WG. J Ind Microbiol Biotechnol; 2019 Jul 15; 46(7):937-949. PubMed ID: 30937555 [Abstract] [Full Text] [Related]
16. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM. J Bacteriol; 2013 Jun 15; 195(11):2573-84. PubMed ID: 23543710 [Abstract] [Full Text] [Related]
17. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Chen Z, Huang J, Wu Y, Wu W, Zhang Y, Liu D. Metab Eng; 2017 Jan 15; 39():151-158. PubMed ID: 27918882 [Abstract] [Full Text] [Related]
18. Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M. J Bacteriol; 2013 Sep 15; 195(18):4283-96. PubMed ID: 23873914 [Abstract] [Full Text] [Related]
19. Elongation factor P is required for EIIGlc translation in Corynebacterium glutamicum due to an essential polyproline motif. Pinheiro B, Petrov DP, Guo L, Martins GB, Bramkamp M, Jung K. Mol Microbiol; 2021 Feb 15; 115(2):320-331. PubMed ID: 33012080 [Abstract] [Full Text] [Related]
20. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum. Wang C, Zhang H, Cai H, Zhou Z, Chen Y, Chen Y, Ouyang P. Appl Biochem Biotechnol; 2014 Jan 15; 172(1):340-50. PubMed ID: 24078255 [Abstract] [Full Text] [Related] Page: [Next] [New Search]