These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Leupin OX, Hug SJ. Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271 [Abstract] [Full Text] [Related]
24. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. Casentini B, Falcione FT, Amalfitano S, Fazi S, Rossetti S. Water Res; 2016 Dec 01; 106():135-145. PubMed ID: 27710797 [Abstract] [Full Text] [Related]
25. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Rao P, Mak MS, Liu T, Lai KC, Lo IM. Chemosphere; 2009 Apr 01; 75(2):156-62. PubMed ID: 19157491 [Abstract] [Full Text] [Related]
26. A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater. Pal P, Chakrabortty S, Linnanen L. Sci Total Environ; 2014 Apr 01; 476-477():601-10. PubMed ID: 24496033 [Abstract] [Full Text] [Related]
27. Investigating the efficiency of microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) for TCE removal in fresh and saline groundwater. Xin J, Tang F, Yan J, La C, Zheng X, Liu W. Sci Total Environ; 2018 Jun 01; 626():638-649. PubMed ID: 29898552 [Abstract] [Full Text] [Related]
28. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Giasuddin AB, Kanel SR, Choi H. Environ Sci Technol; 2007 Mar 15; 41(6):2022-7. PubMed ID: 17410800 [Abstract] [Full Text] [Related]
29. Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer. Zhang S, Kent DB, Elbert DC, Shi Z, Davis JA, Veblen DR. J Contam Hydrol; 2011 Jun 01; 124(1-4):57-67. PubMed ID: 21458880 [Abstract] [Full Text] [Related]
30. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. van Genuchten CM, Bandaru SR, Surorova E, Amrose SE, Gadgil AJ, Peña J. Chemosphere; 2016 Jun 01; 153():270-9. PubMed ID: 27018519 [Abstract] [Full Text] [Related]
34. Removal of arsenic from water using Fe-exchanged natural zeolite. Li Z, Jean JS, Jiang WT, Chang PH, Chen CJ, Liao L. J Hazard Mater; 2011 Mar 15; 187(1-3):318-23. PubMed ID: 21315510 [Abstract] [Full Text] [Related]
35. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids. Majumder S, Nath B, Sarkar S, Chatterjee D, Roman-Ross G, Hidalgo M. Sci Total Environ; 2014 Jan 15; 468-469():804-12. PubMed ID: 24070874 [Abstract] [Full Text] [Related]
38. Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Chauhan D, Dwivedi J, Sankararamakrishnan N. Environ Sci Pollut Res Int; 2014 Jan 15; 21(15):9430-42. PubMed ID: 24756676 [Abstract] [Full Text] [Related]
39. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T, Vengosh A, Dwyer G, Bianchini G. Water Res; 2013 Oct 01; 47(15):5801-18. PubMed ID: 23899878 [Abstract] [Full Text] [Related]
40. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Luong VT, Cañas Kurz EE, Hellriegel U, Luu TL, Hoinkis J, Bundschuh J. Water Res; 2018 Apr 15; 133():110-122. PubMed ID: 29367047 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]