These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 25956650

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system.
    Lian J, HamediRad M, Hu S, Zhao H.
    Nat Commun; 2017 Nov 22; 8(1):1688. PubMed ID: 29167442
    [Abstract] [Full Text] [Related]

  • 6. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae.
    Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH, Zhao H.
    Biotechnol Bioeng; 2012 Aug 22; 109(8):2082-92. PubMed ID: 22383307
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Use YeastFab to Construct Genetic Parts and Multicomponent Pathways for Metabolic Engineering.
    Jiang S, Luo Z, Dai J.
    Methods Mol Biol; 2021 Aug 22; 2196():167-180. PubMed ID: 32889720
    [Abstract] [Full Text] [Related]

  • 10. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae.
    Zhou P, Xie W, Li A, Wang F, Yao Z, Bian Q, Zhu Y, Yu H, Ye L.
    Enzyme Microb Technol; 2017 May 22; 100():28-36. PubMed ID: 28284309
    [Abstract] [Full Text] [Related]

  • 11. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors.
    Naseri G, Behrend J, Rieper L, Mueller-Roeber B.
    Nat Commun; 2019 Jun 13; 10(1):2615. PubMed ID: 31197154
    [Abstract] [Full Text] [Related]

  • 12. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering.
    Li Q, Sun Z, Li J, Zhang Y.
    FEMS Microbiol Lett; 2013 Aug 13; 345(2):94-101. PubMed ID: 23718229
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S, Lee K, Bae SJ, Hahn JS.
    Appl Microbiol Biotechnol; 2015 Mar 13; 99(6):2705-14. PubMed ID: 25573467
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Ho PW, Klein M, Futschik M, Nevoigt E.
    FEMS Yeast Res; 2018 May 01; 18(3):. PubMed ID: 29481685
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.
    Li ZH, Liu M, Wang FQ, Wei DZ.
    Biotechnol Lett; 2018 Aug 01; 40(8):1253-1261. PubMed ID: 29797148
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.