These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 25957745

  • 1. Image-based computational simulation of sub-endothelial LDL accumulation in a human right coronary artery.
    Nouri M, Jalali F, Karimi G, Zarrabi K.
    Comput Biol Med; 2015 Jul; 62():206-21. PubMed ID: 25957745
    [Abstract] [Full Text] [Related]

  • 2. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N, Torii R, Wood NB, Hughes AD, Thom SA, Xu XY.
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [Abstract] [Full Text] [Related]

  • 3. Wall shear stress on LDL accumulation in human RCAs.
    Soulis JV, Fytanidis DK, Papaioannou VC, Giannoglou GD.
    Med Eng Phys; 2010 Oct; 32(8):867-77. PubMed ID: 20580302
    [Abstract] [Full Text] [Related]

  • 4. Endothelium resolving simulations of wall shear-stress dependent mass transfer of LDL in diseased coronary arteries.
    Kenjereš S, van der Krieke JP, Li C.
    Comput Biol Med; 2019 Nov; 114():103453. PubMed ID: 31561097
    [Abstract] [Full Text] [Related]

  • 5. Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress.
    Olgac U, Kurtcuoglu V, Poulikakos D.
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H909-19. PubMed ID: 18083898
    [Abstract] [Full Text] [Related]

  • 6. Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors.
    Sakellarios AI, Papafaklis MI, Siogkas P, Athanasiou LS, Exarchos TP, Stefanou K, Bourantas CV, Naka KK, Michalis LK, Parodi O, Fotiadis DI.
    Am J Physiol Heart Circ Physiol; 2013 Jun 01; 304(11):H1455-70. PubMed ID: 23504178
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N, Ando J, Chen X, Hisada T.
    J Biomech Eng; 2007 Jun 01; 129(3):374-85. PubMed ID: 17536904
    [Abstract] [Full Text] [Related]

  • 9. Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure.
    Liu X, Fan Y, Deng X.
    J Theor Biol; 2011 Aug 21; 283(1):71-81. PubMed ID: 21645523
    [Abstract] [Full Text] [Related]

  • 10. Simulation of LDL permeation into multilayer wall of a coronary bifurcation using WSS-dependent model: effects of hemorheology.
    Moniripiri M, Hassani Soukht Abandani M, Firoozabadi B.
    Biomech Model Mechanobiol; 2023 Apr 21; 22(2):711-727. PubMed ID: 36525181
    [Abstract] [Full Text] [Related]

  • 11. Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium.
    Kim S, Giddens DP.
    J Biomech Eng; 2015 Apr 21; 137(4):041007. PubMed ID: 25363359
    [Abstract] [Full Text] [Related]

  • 12. Low-Density Lipoprotein concentration in the normal Left Coronary Artery tree.
    Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE.
    Biomed Eng Online; 2008 Oct 17; 7():26. PubMed ID: 18925974
    [Abstract] [Full Text] [Related]

  • 13. A new correlation for inclusion of leaky junctions in macroscopic modeling of atherosclerotic lesion initiation.
    Karimi S, Dadvar M, Modarress H, Dabir B.
    J Theor Biol; 2013 Jul 21; 329():94-100. PubMed ID: 23507340
    [Abstract] [Full Text] [Related]

  • 14. Fluid-structure interactions (FSI) based study of low-density lipoproteins (LDL) uptake in the left coronary artery.
    Chen X, Zhuang J, Huang H, Wu Y.
    Sci Rep; 2021 Feb 26; 11(1):4803. PubMed ID: 33637804
    [Abstract] [Full Text] [Related]

  • 15. Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties.
    Sun N, Wood NB, Hughes AD, Thom SA, Xu XY.
    Ann Biomed Eng; 2006 Jul 26; 34(7):1119-28. PubMed ID: 16791491
    [Abstract] [Full Text] [Related]

  • 16. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta.
    Liu X, Fan Y, Deng X, Zhan F.
    J Biomech; 2011 Apr 07; 44(6):1123-31. PubMed ID: 21310418
    [Abstract] [Full Text] [Related]

  • 17. Identification of atherosclerotic lesion-prone sites through patient-specific simulation of low-density lipoprotein accumulation.
    Olgac U, Kurtcuoglu V, Saur SC, Poulikakos D.
    Med Image Comput Comput Assist Interv; 2008 Apr 07; 11(Pt 2):774-81. PubMed ID: 18982675
    [Abstract] [Full Text] [Related]

  • 18. Simulation of Low Density Lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension.
    Roustaei M, Nikmaneshi MR, Firoozabadi B.
    J Biomech; 2018 Jan 23; 67():114-122. PubMed ID: 29273220
    [Abstract] [Full Text] [Related]

  • 19. Low density lipoprotein transport through patient-specific thoracic arterial wall.
    Mpairaktaris DG, Soulis JV, Giannoglou GD.
    Comput Biol Med; 2017 Oct 01; 89():115-126. PubMed ID: 28800440
    [Abstract] [Full Text] [Related]

  • 20. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model.
    Sun N, Wood NB, Hughes AD, Thom SA, Yun Xu X.
    Am J Physiol Heart Circ Physiol; 2007 Jun 01; 292(6):H3148-57. PubMed ID: 17277019
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.