These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells. Krieg RC, Messmann H, Rauch J, Seeger S, Knuechel R. Photochem Photobiol; 2002 Nov; 76(5):518-25. PubMed ID: 12462647 [Abstract] [Full Text] [Related]
9. Identification and pharmacological modification of resistance mechanisms to protoporphyrin-mediated photodynamic therapy in human cutaneous squamous cell carcinoma cell lines. Schary N, Novak B, Kämper L, Yousf A, Lübbert H. Photodiagnosis Photodyn Ther; 2022 Sep; 39():103004. PubMed ID: 35811052 [Abstract] [Full Text] [Related]
10. Effects of Silencing Heme Biosynthesis Enzymes on 5-Aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence and Photodynamic Therapy. Yang X, Li W, Palasuberniam P, Myers KA, Wang C, Chen B. Photochem Photobiol; 2015 Sep; 91(4):923-30. PubMed ID: 25809721 [Abstract] [Full Text] [Related]
11. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Iinuma S, Farshi SS, Ortel B, Hasan T. Br J Cancer; 1994 Jul; 70(1):21-8. PubMed ID: 8018536 [Abstract] [Full Text] [Related]
12. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges. Harada Y, Murayama Y, Takamatsu T, Otsuji E, Tanaka H. Int J Mol Sci; 2022 Jun 09; 23(12):. PubMed ID: 35742921 [Abstract] [Full Text] [Related]
13. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid. Hayashi M, Fukuhara H, Inoue K, Shuin T, Hagiya Y, Nakajima M, Tanaka T, Ogura S. PLoS One; 2015 Jun 09; 10(3):e0122351. PubMed ID: 25822972 [Abstract] [Full Text] [Related]
14. Modulation and proteomic changes on the heme pathway following treatment with 5-aminolevulinic acid. Sansaloni-Pastor S, Varesio E, Lange N. J Photochem Photobiol B; 2022 Aug 09; 233():112484. PubMed ID: 35671620 [Abstract] [Full Text] [Related]
15. Regulation of 5-aminolevulinic acid-dependent protoporphyrin IX accumulations in human histiocytic lymphoma U937 cells. Okimura Y, Fujita H, Ogino T, Inoue K, Shuin T, Yano H, Yasuda T, Inoue M, Utsumi K, Sasaki J. Physiol Chem Phys Med NMR; 2007 Aug 09; 39(1):69-82. PubMed ID: 18613640 [Abstract] [Full Text] [Related]
16. Aminolevulinic Acid-Based Tumor Detection and Therapy: Molecular Mechanisms and Strategies for Enhancement. Yang X, Palasuberniam P, Kraus D, Chen B. Int J Mol Sci; 2015 Oct 28; 16(10):25865-80. PubMed ID: 26516850 [Abstract] [Full Text] [Related]
17. Improvement of the efficacy of 5-aminolevulinic acid-mediated photodynamic treatment in human oral squamous cell carcinoma HSC-4. Yamamoto M, Fujita H, Katase N, Inoue K, Nagatsuka H, Utsumi K, Sasaki J, Ohuchi H. Acta Med Okayama; 2013 Oct 28; 67(3):153-64. PubMed ID: 23804138 [Abstract] [Full Text] [Related]
18. Novel potential photodynamic therapy strategy using 5-Aminolevulinic acid for ovarian clear-cell carcinoma. Teshigawara T, Mizuno M, Ishii T, Kitajima Y, Utsumi F, Sakata J, Kajiyama H, Shibata K, Ishizuka M, Kikkawa F. Photodiagnosis Photodyn Ther; 2018 Mar 28; 21():121-127. PubMed ID: 29196245 [Abstract] [Full Text] [Related]
19. Comparison of 5-aminolevulinic acid and its hexylester mediated photodynamic action on human hepatoma cells. Ren QG, Wu SM, Peng Q, Chen JY. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Sep 28; 34(5):650-4. PubMed ID: 12198571 [Abstract] [Full Text] [Related]
20. Aminolevulinic acid derivatives-based photodynamic therapy in human intra- and extrahepatic cholangiocarcinoma cells. Chung CW, Kim CH, Lee HM, Kim DH, Kwak TW, Chung KD, Jeong YI, Kang DH. Eur J Pharm Biopharm; 2013 Nov 28; 85(3 Pt A):503-10. PubMed ID: 23429232 [Abstract] [Full Text] [Related] Page: [Next] [New Search]