These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 25962741

  • 1. Overexpression of functional human oxidosqualene cyclase in Escherichia coli.
    Kürten C, Uhlén M, Syrén PO.
    Protein Expr Purif; 2015 Nov; 115():46-53. PubMed ID: 25962741
    [Abstract] [Full Text] [Related]

  • 2. The monotopic membrane protein human oxidosqualene cyclase is active as monomer.
    Ruf A, Müller F, D'Arcy B, Stihle M, Kusznir E, Handschin C, Morand OH, Thoma R.
    Biochem Biophys Res Commun; 2004 Mar 05; 315(2):247-54. PubMed ID: 14766201
    [Abstract] [Full Text] [Related]

  • 3. Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase from Euphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases.
    Ito R, Masukawa Y, Hoshino T.
    FEBS J; 2013 Mar 05; 280(5):1267-80. PubMed ID: 23294602
    [Abstract] [Full Text] [Related]

  • 4. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization.
    Ghimire GP, Oh TJ, Lee HC, Sohng JK.
    Biotechnol Lett; 2009 Apr 05; 31(4):565-9. PubMed ID: 19116691
    [Abstract] [Full Text] [Related]

  • 5. Conversion of a plant oxidosqualene-cycloartenol synthase to an oxidosqualene-lanosterol cyclase by random mutagenesis.
    Wu TK, Griffin JH.
    Biochemistry; 2002 Jul 02; 41(26):8238-44. PubMed ID: 12081472
    [Abstract] [Full Text] [Related]

  • 6. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase.
    Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A.
    Nature; 2004 Nov 04; 432(7013):118-22. PubMed ID: 15525992
    [Abstract] [Full Text] [Related]

  • 7. Molecular characterization of an oxidosqualene cyclase that yields shionone, a unique tetracyclic triterpene ketone of Aster tataricus.
    Sawai S, Uchiyama H, Mizuno S, Aoki T, Akashi T, Ayabe S, Takahashi T.
    FEBS Lett; 2011 Apr 06; 585(7):1031-6. PubMed ID: 21377465
    [Abstract] [Full Text] [Related]

  • 8. Molecular cloning and functional characterization of 2,3-oxidosqualene cyclases from Artemisia argyi.
    Chen Y, Huang R, Chen J, Lin C, Wu Y, Chen J, Shen Q, Wang F, Duan L, Cui H.
    Protein Expr Purif; 2024 Oct 06; 222():106533. PubMed ID: 38876402
    [Abstract] [Full Text] [Related]

  • 9. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions.
    Wu TK, Yu MT, Liu YT, Chang CH, Wang HJ, Diau EW.
    Org Lett; 2006 Mar 30; 8(7):1319-22. PubMed ID: 16562881
    [Abstract] [Full Text] [Related]

  • 10. Protein engineering of oxidosqualene-lanosterol cyclase into triterpene monocyclase.
    Chang CH, Wen HY, Shie WS, Lu CT, Li ME, Liu YT, Li WH, Wu TK.
    Org Biomol Chem; 2013 Jul 07; 11(25):4214-9. PubMed ID: 23680980
    [Abstract] [Full Text] [Related]

  • 11. Catalytic mechanism and product specificity of oxidosqualene-lanosterol cyclase: a QM/MM study.
    Tian BX, Eriksson LA.
    J Phys Chem B; 2012 Nov 29; 116(47):13857-62. PubMed ID: 23130825
    [Abstract] [Full Text] [Related]

  • 12. Squalene cyclase and oxidosqualene cyclase from a fern.
    Shinozaki J, Shibuya M, Masuda K, Ebizuka Y.
    FEBS Lett; 2008 Jan 23; 582(2):310-8. PubMed ID: 18154734
    [Abstract] [Full Text] [Related]

  • 13. Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: biosynthesis of the antitumor clavaric acid.
    Godio RP, Martín JF.
    Fungal Genet Biol; 2009 Mar 23; 46(3):232-42. PubMed ID: 19130892
    [Abstract] [Full Text] [Related]

  • 14. Characterization of the 2,3-Oxidosqualene Cyclase Gene from Antrodia cinnamomea and Enhancement of Cytotoxic Triterpenoid Compound Production.
    Lin YL, Lee YR, Tsao NW, Wang SY, Shaw JF, Chu FH.
    J Nat Prod; 2015 Jul 24; 78(7):1556-62. PubMed ID: 26125648
    [Abstract] [Full Text] [Related]

  • 15. Lanosterol biosynthesis: the critical role of the methyl-29 group of 2,3-oxidosqualene for the correct folding of this substrate and for the construction of the five-membered D ring.
    Hoshino T, Chiba A, Abe N.
    Chemistry; 2012 Oct 08; 18(41):13108-16. PubMed ID: 22933236
    [Abstract] [Full Text] [Related]

  • 16. Biosynthetic Mechanism of Lanosterol: Cyclization.
    Chen N, Wang S, Smentek L, Hess BA, Wu R.
    Angew Chem Int Ed Engl; 2015 Jul 20; 54(30):8693-6. PubMed ID: 26069216
    [Abstract] [Full Text] [Related]

  • 17. [Oxidosqualene cyclases in triterpenoids biosynthesis: a review].
    Chen C, Pang Y, Chen Q, Li C, Lü B.
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb 25; 38(2):443-459. PubMed ID: 35234375
    [Abstract] [Full Text] [Related]

  • 18. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis.
    Lamb DC, Jackson CJ, Warrilow AG, Manning NJ, Kelly DE, Kelly SL.
    Mol Biol Evol; 2007 Aug 25; 24(8):1714-21. PubMed ID: 17567593
    [Abstract] [Full Text] [Related]

  • 19. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T, Kannenberg E.
    Environ Microbiol; 2009 May 25; 11(5):1224-41. PubMed ID: 19207562
    [Abstract] [Full Text] [Related]

  • 20. The cysteine 703 to isoleucine or histidine mutation of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae generates an iridal-type triterpenoid.
    Chang CH, Chen YC, Tseng SW, Liu YT, Wen HY, Li WH, Huang CY, Ko CY, Wang TT, Wu TK.
    Biochimie; 2012 Nov 25; 94(11):2376-81. PubMed ID: 22732192
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.