These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


935 related items for PubMed ID: 25972259

  • 1. Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement.
    Wu Z, Xu G, Weinreb RN, Yu M, Leung CK.
    Ophthalmology; 2015 Jul; 122(7):1317-29. PubMed ID: 25972259
    [Abstract] [Full Text] [Related]

  • 2. Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma.
    Wu Z, Lin C, Crowther M, Mak H, Yu M, Leung CK.
    Invest Ophthalmol Vis Sci; 2017 Mar 01; 58(3):1825-1833. PubMed ID: 28353690
    [Abstract] [Full Text] [Related]

  • 3. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography.
    Reis AS, O'Leary N, Stanfield MJ, Shuba LM, Nicolela MT, Chauhan BC.
    Invest Ophthalmol Vis Sci; 2012 Aug 24; 53(9):5819-26. PubMed ID: 22807291
    [Abstract] [Full Text] [Related]

  • 4. Optic nerve head deformation in glaucoma: the temporal relationship between optic nerve head surface depression and retinal nerve fiber layer thinning.
    Xu G, Weinreb RN, Leung CK.
    Ophthalmology; 2014 Dec 24; 121(12):2362-70. PubMed ID: 25108319
    [Abstract] [Full Text] [Related]

  • 5. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma.
    Lee EJ, Kim TW, Weinreb RN.
    Ophthalmology; 2012 Jul 24; 119(7):1359-66. PubMed ID: 22464141
    [Abstract] [Full Text] [Related]

  • 6. Detection of glaucomatous progression by spectral-domain optical coherence tomography.
    Na JH, Sung KR, Lee JR, Lee KS, Baek S, Kim HK, Sohn YH.
    Ophthalmology; 2013 Jul 24; 120(7):1388-95. PubMed ID: 23474248
    [Abstract] [Full Text] [Related]

  • 7. Effect of Trabeculectomy on OCT Measurements of the Optic Nerve Head Neuroretinal Rim Tissue.
    Sanchez FG, Sanders DS, Moon JJ, Gardiner SK, Reynaud J, Fortune B, Mansberger SL.
    Ophthalmol Glaucoma; 2020 Jul 24; 3(1):32-39. PubMed ID: 32632405
    [Abstract] [Full Text] [Related]

  • 8. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project.
    Ren R, Yang H, Gardiner SK, Fortune B, Hardin C, Demirel S, Burgoyne CF.
    Invest Ophthalmol Vis Sci; 2014 Mar 13; 55(3):1531-9. PubMed ID: 24474264
    [Abstract] [Full Text] [Related]

  • 9. Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness.
    Vianna JR, Lanoe VR, Quach J, Sharpe GP, Hutchison DM, Belliveau AC, Shuba LM, Nicolela MT, Chauhan BC.
    Ophthalmology; 2017 Sep 13; 124(9):1392-1402. PubMed ID: 28461018
    [Abstract] [Full Text] [Related]

  • 10. Cupping in the Monkey Optic Nerve Transection Model Consists of Prelaminar Tissue Thinning in the Absence of Posterior Laminar Deformation.
    Ing E, Ivers KM, Yang H, Gardiner SK, Reynaud J, Cull G, Wang L, Burgoyne CF.
    Invest Ophthalmol Vis Sci; 2016 May 01; 57(6):2914–2927. PubMed ID: 27168368
    [Abstract] [Full Text] [Related]

  • 11. Effect of focal lamina cribrosa defect on glaucomatous visual field progression.
    Faridi OS, Park SC, Kabadi R, Su D, De Moraes CG, Liebmann JM, Ritch R.
    Ophthalmology; 2014 Aug 01; 121(8):1524-30. PubMed ID: 24697910
    [Abstract] [Full Text] [Related]

  • 12. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits.
    You JY, Park SC, Su D, Teng CC, Liebmann JM, Ritch R.
    JAMA Ophthalmol; 2013 Mar 01; 131(3):314-20. PubMed ID: 23370812
    [Abstract] [Full Text] [Related]

  • 13. Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography.
    Yoshikawa M, Akagi T, Hangai M, Ohashi-Ikeda H, Takayama K, Morooka S, Kimura Y, Nakano N, Yoshimura N.
    Invest Ophthalmol Vis Sci; 2014 Jan 23; 55(1):477-84. PubMed ID: 24398100
    [Abstract] [Full Text] [Related]

  • 14. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
    Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N.
    Ophthalmology; 2009 Feb 23; 116(2):214-22. PubMed ID: 19091413
    [Abstract] [Full Text] [Related]

  • 15. In vivo evaluation of focal lamina cribrosa defects in glaucoma.
    Kiumehr S, Park SC, Syril D, Teng CC, Tello C, Liebmann JM, Ritch R.
    Arch Ophthalmol; 2012 May 23; 130(5):552-9. PubMed ID: 22232364
    [Abstract] [Full Text] [Related]

  • 16. Measurement of Structural Parameters of the Lamina Cribrosa in Primary Open-Angle Glaucoma and Chronic Primary Angle-Closure Glaucoma by Optical Coherence Tomography and Its Correlations with Ocular Parameters.
    Hao L, Xiao H, Gao X, Xu X, Liu X.
    Ophthalmic Res; 2019 May 23; 62(1):36-45. PubMed ID: 30783031
    [Abstract] [Full Text] [Related]

  • 17. Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma.
    Rebolleda G, Pérez-Sarriegui A, Díez-Álvarez L, De Juan V, Muñoz-Negrete FJ.
    Eur J Ophthalmol; 2019 Mar 23; 29(2):202-209. PubMed ID: 29911429
    [Abstract] [Full Text] [Related]

  • 18. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma.
    Li L, Bian A, Cheng G, Zhou Q.
    Acta Ophthalmol; 2016 Sep 23; 94(6):e492-500. PubMed ID: 27009574
    [Abstract] [Full Text] [Related]

  • 19. Prelamina and Lamina Cribrosa in Glaucoma Patients With Unilateral Visual Field Loss.
    Kim DW, Jeoung JW, Kim YW, Girard MJ, Mari JM, Kim YK, Park KH, Kim DM.
    Invest Ophthalmol Vis Sci; 2016 Apr 23; 57(4):1662-70. PubMed ID: 27054519
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 47.