These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 25974045
41. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system. van Sleeuwen RM, Zhang S, Normand V. Biomacromolecules; 2012 Mar 12; 13(3):787-97. PubMed ID: 22268547 [Abstract] [Full Text] [Related]
42. The effect of water on the glass transition of human hair. Wortmann FJ, Stapels M, Elliott R, Chandra L. Biopolymers; 2006 Apr 05; 81(5):371-5. PubMed ID: 16358248 [Abstract] [Full Text] [Related]
43. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy. Kasraian K, Spitznagel TM, Juneau JA, Yim K. Pharm Dev Technol; 1998 May 05; 3(2):233-9. PubMed ID: 9653761 [Abstract] [Full Text] [Related]
44. Glassy behavior of a percolative water-protein system. Pagnotta SE, Gargana R, Bruni F, Bocedi A. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar 05; 71(3 Pt 1):031506. PubMed ID: 15903434 [Abstract] [Full Text] [Related]
46. Testing the validity of comparisons between the rheological and the calorimetric glass transition temperatures. Kasapis S, Al-Marhoobi IM, Mitchell JR. Carbohydr Res; 2003 Apr 04; 338(8):787-94. PubMed ID: 12668099 [Abstract] [Full Text] [Related]
49. Hydration water and peptide dynamics--two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures. Bastos M, Alves N, Maia S, Gomes P, Inaba A, Miyazaki Y, Zanotti JM. Phys Chem Chem Phys; 2013 Oct 21; 15(39):16693-703. PubMed ID: 23986181 [Abstract] [Full Text] [Related]
50. Effects of glass transition and hydration on the biological stability of dry yeast. Kawai K, Sato K, Lee K, Koseki S. J Food Sci; 2021 Apr 21; 86(4):1343-1353. PubMed ID: 33655495 [Abstract] [Full Text] [Related]
51. Effect of tetrasodium tripolyphosphate on the freeze-concentrated glass-like transition temperature of sugar aqueous solutions. Kawai K, Suzuki T. Cryo Letters; 2006 Apr 21; 27(2):107-14. PubMed ID: 16794742 [Abstract] [Full Text] [Related]
52. Experimental data and predictive equation of the specific heat capacity of fruit juice model systems measured with differential scanning calorimetry. Sánchez-Romero MA, García-Coronado P, Rivera-Bautista C, González-García R, Grajales-Lagunes A, Abud-Archila M, Ruiz-Cabrera MA. J Food Sci; 2021 May 21; 86(5):1946-1962. PubMed ID: 33844286 [Abstract] [Full Text] [Related]
53. Occurrence of glass transitions in long-chain phosphatidylcholine mesophases. Shalaev EY, Zografi G, Steponkus PL. J Phys Chem B; 2010 Mar 18; 114(10):3526-33. PubMed ID: 20175551 [Abstract] [Full Text] [Related]
54. Microscopic relaxations in a protein sustained down to 160K in a non-glass forming organic solvent. Mamontov E, O'Neill H. Biochim Biophys Acta Gen Subj; 2017 Jan 18; 1861(1 Pt B):3513-3519. PubMed ID: 27154287 [Abstract] [Full Text] [Related]
55. Annealing effect reversal by water sorption-desorption and heating above the glass transition temperature-comparison of properties. Saxena A, Jean YC, Suryanarayanan R. Mol Pharm; 2013 Aug 05; 10(8):3005-12. PubMed ID: 23834191 [Abstract] [Full Text] [Related]
56. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN. Chem Phys Lipids; 2007 Jul 05; 148(1):26-50. PubMed ID: 17524381 [Abstract] [Full Text] [Related]
57. Glass transition temperature and its relevance in food processing. Roos YH. Annu Rev Food Sci Technol; 2010 Jul 05; 1():469-96. PubMed ID: 22129345 [Abstract] [Full Text] [Related]
58. Glass transition of gluten. 1: Gluten and gluten-sugar mixtures. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JM. Int J Biol Macromol; 1992 Oct 05; 14(5):257-66. PubMed ID: 1419963 [Abstract] [Full Text] [Related]
59. Partial phase diagram of aqueous bovine carbonic anhydrase: analyses of the pressure-dependent temperatures of the low- to physiological-temperature nondenaturational conformational change and of unfolding to the molten globule state. McNevin SL, Nguyen DT, Britt BM. J Biomol Struct Dyn; 2008 Oct 05; 26(2):263-72. PubMed ID: 18597548 [Abstract] [Full Text] [Related]
60. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis. Magoń A, Pyda M. Carbohydr Res; 2011 Nov 29; 346(16):2558-66. PubMed ID: 22000766 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]