These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 25976915

  • 1. The biocathode of microbial electrochemical systems and microbially-influenced corrosion.
    Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS.
    Bioresour Technol; 2015 Aug; 190():395-401. PubMed ID: 25976915
    [Abstract] [Full Text] [Related]

  • 2. Microbial electrolysis cell with a microbial biocathode.
    Jeremiasse AW, Hamelers HV, Buisman CJ.
    Bioelectrochemistry; 2010 Apr; 78(1):39-43. PubMed ID: 19523879
    [Abstract] [Full Text] [Related]

  • 3. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV, Srikanth S.
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [Abstract] [Full Text] [Related]

  • 4. Anaerobes in Bioelectrochemical Systems.
    Kokko ME, Mäkinen AE, Puhakka JA.
    Adv Biochem Eng Biotechnol; 2016 Nov; 156():263-292. PubMed ID: 26907547
    [Abstract] [Full Text] [Related]

  • 5. Biocathode microbial fuel cell for efficient electricity recovery from dairy manure.
    Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ, Ren N.
    Biosens Bioelectron; 2012 Jan 15; 31(1):537-43. PubMed ID: 22169813
    [Abstract] [Full Text] [Related]

  • 6. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.
    Huang L, Regan JM, Quan X.
    Bioresour Technol; 2011 Jan 15; 102(1):316-23. PubMed ID: 20634062
    [Abstract] [Full Text] [Related]

  • 7. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells.
    Croese E, Jeremiasse AW, Marshall IP, Spormann AM, Euverink GJ, Geelhoed JS, Stams AJ, Plugge CM.
    Enzyme Microb Technol; 2014 Jan 15; 61-62():67-75. PubMed ID: 24910339
    [Abstract] [Full Text] [Related]

  • 8. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes.
    Tang X, Guo K, Li H, Du Z, Tian J.
    Bioresour Technol; 2011 Feb 15; 102(3):3558-60. PubMed ID: 20888221
    [Abstract] [Full Text] [Related]

  • 9. Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES).
    Srikanth S, Reddy MV, Mohan SV.
    Bioresour Technol; 2012 Dec 15; 125():291-9. PubMed ID: 23037883
    [Abstract] [Full Text] [Related]

  • 10. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance.
    Lyon DY, Buret F, Vogel TM, Monier JM.
    Bioelectrochemistry; 2010 Apr 15; 78(1):2-7. PubMed ID: 19783225
    [Abstract] [Full Text] [Related]

  • 11. Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst.
    Strycharz-Glaven SM, Glaven RH, Wang Z, Zhou J, Vora GJ, Tender LM.
    Appl Environ Microbiol; 2013 Jul 15; 79(13):3933-42. PubMed ID: 23603672
    [Abstract] [Full Text] [Related]

  • 12. A Gibbs Free Energy-Based Assessment of Microbial Electrocatalysis.
    Gildemyn S, Rozendal RA, Rabaey K.
    Trends Biotechnol; 2017 May 15; 35(5):393-406. PubMed ID: 28351612
    [Abstract] [Full Text] [Related]

  • 13. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification.
    You SJ, Ren NQ, Zhao QL, Kiely PD, Wang JY, Yang FL, Fu L, Peng L.
    Biosens Bioelectron; 2009 Aug 15; 24(12):3698-701. PubMed ID: 19502045
    [Abstract] [Full Text] [Related]

  • 14. Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on overpotentials and bio-electro kinetics.
    Srikanth S, Venkata Mohan S.
    Bioresour Technol; 2012 Sep 15; 119():241-51. PubMed ID: 22728788
    [Abstract] [Full Text] [Related]

  • 15. The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community.
    Rimboud M, Desmond-Le Quemener E, Erable B, Bouchez T, Bergel A.
    Bioelectrochemistry; 2015 Apr 15; 102():42-9. PubMed ID: 25483999
    [Abstract] [Full Text] [Related]

  • 16. Linking bacterial metabolism to graphite cathodes: electrochemical insights into the H(2) -producing capability of Desulfovibrio sp.
    Aulenta F, Catapano L, Snip L, Villano M, Majone M.
    ChemSusChem; 2012 Jun 15; 5(6):1080-5. PubMed ID: 22581429
    [Abstract] [Full Text] [Related]

  • 17. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z, Pisciotta JM, Tokash JC, Logan BE.
    J Biotechnol; 2013 Dec 15; 168(4):478-85. PubMed ID: 24126154
    [Abstract] [Full Text] [Related]

  • 18. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I, Greenman J, Melhuish C.
    Bioelectrochemistry; 2010 Apr 15; 78(1):44-50. PubMed ID: 19540172
    [Abstract] [Full Text] [Related]

  • 19. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells.
    Ter Heijne A, Strik DP, Hamelers HV, Buisman CJ.
    Environ Sci Technol; 2010 Sep 15; 44(18):7151-6. PubMed ID: 20715764
    [Abstract] [Full Text] [Related]

  • 20. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance.
    Picioreanu C, van Loosdrecht MC, Curtis TP, Scott K.
    Bioelectrochemistry; 2010 Apr 15; 78(1):8-24. PubMed ID: 19523880
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.