These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 25989934

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The influence of surface modification on bacterial adhesion to titanium-based substrates.
    Lorenzetti M, Dogša I, Stošicki T, Stopar D, Kalin M, Kobe S, Novak S.
    ACS Appl Mater Interfaces; 2015 Jan 28; 7(3):1644-51. PubMed ID: 25543452
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Gelatin functionalised porous titanium alloy implants for orthopaedic applications.
    Vanderleyden E, Van Bael S, Chai YC, Kruth JP, Schrooten J, Dubruel P.
    Mater Sci Eng C Mater Biol Appl; 2014 Sep 28; 42():396-404. PubMed ID: 25063133
    [Abstract] [Full Text] [Related]

  • 8. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS, de Oliveira MV, Pereira LC, de Andrade MC.
    Artif Organs; 2008 Apr 28; 32(4):277-82. PubMed ID: 18370941
    [Abstract] [Full Text] [Related]

  • 9. Modification of Ti6Al4V implant surfaces by biocompatible TiO2/PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior.
    Catauro M, Bollino F, Giovanardi R, Veronesi P.
    Mater Sci Eng C Mater Biol Appl; 2017 May 01; 74():501-507. PubMed ID: 28254324
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.
    Pradhan D, Wren AW, Misture ST, Mellott NP.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():918-26. PubMed ID: 26478387
    [Abstract] [Full Text] [Related]

  • 14. Enhanced osteoconductivity of titanium implant by polarization-induced surface charges.
    Nozaki K, Wang W, Horiuchi N, Nakamura M, Takakuda K, Yamashita K, Nagai A.
    J Biomed Mater Res A; 2014 Sep 01; 102(9):3077-86. PubMed ID: 24123807
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The shear strength of three-dimensional capillary-porous titanium coatings for intraosseous implants.
    Kalita VI, Komlev DI, Komlev VS, Radyuk AA.
    Mater Sci Eng C Mater Biol Appl; 2016 Mar 01; 60():255-259. PubMed ID: 26706529
    [Abstract] [Full Text] [Related]

  • 19. Comparison between sol-gel-derived anatase- and rutile-structured TiO2 coatings in soft-tissue environment.
    Rossi S, Moritz N, Tirri T, Peltola T, Areva S, Jokinen M, Happonen RP, Närhi T.
    J Biomed Mater Res A; 2007 Sep 15; 82(4):965-74. PubMed ID: 17335031
    [Abstract] [Full Text] [Related]

  • 20. Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO₂ coatings.
    Lorenzetti M, Dakischew O, Trinkaus K, Lips KS, Schnettler R, Kobe S, Novak S.
    J Biomater Appl; 2015 Jul 15; 30(1):71-84. PubMed ID: 25633960
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.