These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 2600307

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity.
    McMahon CM, Patuzzi RB.
    Hear Res; 2002 Nov; 173(1-2):134-52. PubMed ID: 12372642
    [Abstract] [Full Text] [Related]

  • 3. Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone.
    McMahon CM, Brown DJ, Patuzzi RB.
    Hear Res; 2004 Apr; 190(1-2):75-86. PubMed ID: 15051131
    [Abstract] [Full Text] [Related]

  • 4. Amplitude enhancement is seen in the cochlear nerve but not at, or before, the afferent synapse.
    Henry KR, Price JM.
    Hear Res; 1994 Sep; 79(1-2):190-6. PubMed ID: 7806482
    [Abstract] [Full Text] [Related]

  • 5. K(+) currents produce P(1) in the RW CAP: evidence from DC current bias, K(+) channel blockade and recordings from cochlea and brainstem.
    Brown DJ, McMahon CM, Patuzzi RB.
    Hear Res; 2004 Apr; 190(1-2):60-74. PubMed ID: 15051130
    [Abstract] [Full Text] [Related]

  • 6. Cochlear electrical activity in the C57BL/6 laboratory mouse: volume-conducted vertex and round window responses.
    Henry KR, Chole RA.
    Acta Otolaryngol; 1979 Apr; 87(1-2):61-8. PubMed ID: 760378
    [Abstract] [Full Text] [Related]

  • 7. Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil.
    Henry KR.
    Hear Res; 1995 Oct; 90(1-2):176-84. PubMed ID: 8974995
    [Abstract] [Full Text] [Related]

  • 8. Asynchronous neural activity recorded from the round window.
    Dolan DF, Nuttall AL, Avinash G.
    J Acoust Soc Am; 1990 Jun; 87(6):2621-7. PubMed ID: 2373796
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Evidence that inner hair cells are the major source of cochlear summating potentials.
    Zheng XY, Ding DL, McFadden SL, Henderson D.
    Hear Res; 1997 Nov; 113(1-2):76-88. PubMed ID: 9387987
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB, Yates GK, Johnstone BM.
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Hair cell and neural contributions to the cochlear summating potential.
    Pappa AK, Hutson KA, Scott WC, Wilson JD, Fox KE, Masood MM, Giardina CK, Pulver SH, Grana GD, Askew C, Fitzpatrick DC.
    J Neurophysiol; 2019 Jun 01; 121(6):2163-2180. PubMed ID: 30943095
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. On the origin of the compound action potentials (N1, N2) of the cochlea of the rat.
    Møller AR.
    Exp Neurol; 1983 Jun 01; 80(3):633-44. PubMed ID: 6852156
    [Abstract] [Full Text] [Related]

  • 18. Low-frequency biasing of round window responses in guinea pigs and chinchillas.
    Tono T, Morizono T.
    Audiology; 1995 Jun 01; 34(1):47-56. PubMed ID: 7487646
    [Abstract] [Full Text] [Related]

  • 19. Intraoperative round window recordings to acoustic stimuli from cochlear implant patients.
    Choudhury B, Fitzpatrick DC, Buchman CA, Wei BP, Dillon MT, He S, Adunka OF.
    Otol Neurotol; 2012 Dec 01; 33(9):1507-15. PubMed ID: 23047261
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.