These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 26016528
21. Molecular mechanism of the Zn2+-induced folding of the distal CCHC finger motif of the HIV-1 nucleocapsid protein. Bombarda E, Grell E, Roques BP, Mély Y. Biophys J; 2007 Jul 01; 93(1):208-17. PubMed ID: 17416621 [Abstract] [Full Text] [Related]
22. All-electron calculations of the nucleation structures in metal-induced zinc-finger folding: role of the Peptide backbone. Dudev T, Lim C. J Am Chem Soc; 2007 Oct 17; 129(41):12497-504. PubMed ID: 17883271 [Abstract] [Full Text] [Related]
23. The connection of α- and β-domains in mammalian metallothionein-2 differentiates Zn(II) binding affinities, affects folding, and determines zinc buffering properties. Singh AK, Pomorski A, Wu S, Peris-Díaz MD, Czepczyńska-Krężel H, Krężel A. Metallomics; 2023 Jun 01; 15(6):. PubMed ID: 37147085 [Abstract] [Full Text] [Related]
24. Zn(II) binding and DNA binding properties of ligand-substituted CXHH-type zinc finger proteins. Imanishi M, Matsumura K, Tsuji S, Nakaya T, Negi S, Futaki S, Sugiura Y. Biochemistry; 2012 Apr 24; 51(16):3342-8. PubMed ID: 22482427 [Abstract] [Full Text] [Related]
25. A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment. Tubon TC, Tansey WP, Herr W. Mol Cell Biol; 2004 Apr 24; 24(7):2863-74. PubMed ID: 15024075 [Abstract] [Full Text] [Related]
26. Thermodynamics of zinc binding to hepatitis C virus NS3 protease: a folding by binding event. Abian O, Neira JL, Velazquez-Campoy A. Proteins; 2009 Nov 15; 77(3):624-36. PubMed ID: 19536779 [Abstract] [Full Text] [Related]
27. Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor. Pan T, Coleman JE. Proc Natl Acad Sci U S A; 1989 May 15; 86(9):3145-9. PubMed ID: 2497463 [Abstract] [Full Text] [Related]
28. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors. Robinson SG, Burns PT, Miceli AM, Grice KA, Karver CE, Jin L. Dalton Trans; 2016 Jul 19; 45(29):11817-29. PubMed ID: 27373714 [Abstract] [Full Text] [Related]
29. Role of metal-ligand coordination in the folding pathway of zinc finger peptides. Miura T, Satoh T, Takeuchi H. Biochim Biophys Acta; 1998 Apr 23; 1384(1):171-9. PubMed ID: 9602113 [Abstract] [Full Text] [Related]
30. Thermodynamics of formation of the insulin hexamer: metal-stabilized proton-coupled assembly of quaternary structure. Carpenter MC, Wilcox DE. Biochemistry; 2014 Mar 04; 53(8):1296-301. PubMed ID: 24506168 [Abstract] [Full Text] [Related]
31. Grafting of a high-affinity Zn(II)-binding site on the beta-barrel of retinol-binding protein results in enhanced folding stability and enables simplified purification. Müller HN, Skerra A. Biochemistry; 1994 Nov 29; 33(47):14126-35. PubMed ID: 7947824 [Abstract] [Full Text] [Related]
32. Metal binding to the HIV nucleocapsid peptide. McLendon G, Hull H, Larkin K, Chang W. J Biol Inorg Chem; 1999 Apr 29; 4(2):171-4. PubMed ID: 10499088 [Abstract] [Full Text] [Related]
33. Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase. Kayatekin C, Zitzewitz JA, Matthews CR. J Mol Biol; 2008 Dec 12; 384(2):540-55. PubMed ID: 18840448 [Abstract] [Full Text] [Related]
34. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation. Kocyła A, Adamczyk J, Krężel A. Metallomics; 2018 Jan 24; 10(1):120-131. PubMed ID: 29240217 [Abstract] [Full Text] [Related]
35. Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides. Doku RT, Park G, Wheeler KE, Splan KE. J Biol Inorg Chem; 2013 Aug 24; 18(6):669-78. PubMed ID: 23775426 [Abstract] [Full Text] [Related]
36. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M, Clarke O, Gulbis JM, Keizer DW, Jarvis RS, Cobbett CS, Hinds MG, Xiao Z, Wedd AG. Biochemistry; 2009 Dec 15; 48(49):11640-54. PubMed ID: 19883117 [Abstract] [Full Text] [Related]
37. Binding of TFIIB to RNA polymerase II: Mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Chen HT, Hahn S. Mol Cell; 2003 Aug 15; 12(2):437-47. PubMed ID: 14536083 [Abstract] [Full Text] [Related]
38. Zinc binding to amyloid-beta: isothermal titration calorimetry and Zn competition experiments with Zn sensors. Talmard C, Bouzan A, Faller P. Biochemistry; 2007 Nov 27; 46(47):13658-66. PubMed ID: 17983245 [Abstract] [Full Text] [Related]
39. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Sainsbury S, Niesser J, Cramer P. Nature; 2013 Jan 17; 493(7432):437-40. PubMed ID: 23151482 [Abstract] [Full Text] [Related]
40. A pH dependence study on the unfolding and refolding of apoazurin: comparison with Zn(II) azurin. Hansen JE, McBrayer MK, Robbins M, Suh Y. Cell Biochem Biophys; 2002 Jan 17; 36(1):19-40. PubMed ID: 11939370 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]