These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 26018343

  • 1. Conversion of Isoflavone Glucosides to Aglycones by Partially Purified β-Glucosidases from Microbial and Vegetable Sources.
    Fujita A, Alencar SM, Park YK.
    Appl Biochem Biotechnol; 2015 Jul; 176(6):1659-72. PubMed ID: 26018343
    [Abstract] [Full Text] [Related]

  • 2. Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour.
    Tipkanon S, Chompreeda P, Haruthaithanasan V, Suwonsichon T, Prinyawiwatkul W, Xu Z.
    J Agric Food Chem; 2010 Nov 10; 58(21):11340-5. PubMed ID: 20942463
    [Abstract] [Full Text] [Related]

  • 3. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides.
    Fang W, Song R, Zhang X, Zhang X, Zhang X, Wang X, Fang Z, Xiao Y.
    J Agric Food Chem; 2014 Dec 03; 62(48):11688-95. PubMed ID: 25389558
    [Abstract] [Full Text] [Related]

  • 4. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides.
    Pei X, Zhao J, Cai P, Sun W, Ren J, Wu Q, Zhang S, Tian C.
    Protein Expr Purif; 2016 Mar 03; 119():75-84. PubMed ID: 26596358
    [Abstract] [Full Text] [Related]

  • 5. Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase.
    Chen KI, Lo YC, Liu CW, Yu RC, Chou CC, Cheng KC.
    Food Chem; 2013 Aug 15; 139(1-4):79-85. PubMed ID: 23561081
    [Abstract] [Full Text] [Related]

  • 6. Soymilk processing with higher isoflavone aglycone content.
    Baú TR, Ida EI.
    Food Chem; 2015 Sep 15; 183():161-8. PubMed ID: 25863624
    [Abstract] [Full Text] [Related]

  • 7. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi.
    Lee IH, Chou CC.
    J Agric Food Chem; 2006 Feb 22; 54(4):1309-14. PubMed ID: 16478253
    [Abstract] [Full Text] [Related]

  • 8. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library.
    Li G, Jiang Y, Fan XJ, Liu YH.
    Bioresour Technol; 2012 Nov 22; 123():15-22. PubMed ID: 22940294
    [Abstract] [Full Text] [Related]

  • 9. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.
    Chun J, Kim GM, Lee KW, Choi ID, Kwon GH, Park JY, Jeong SJ, Kim JS, Kim JH.
    J Food Sci; 2007 Mar 22; 72(2):M39-44. PubMed ID: 17995840
    [Abstract] [Full Text] [Related]

  • 10. Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones.
    Kondo T, Sibponkrung S, Hironao KY, Tittabutr P, Boonkerd N, Ishikawa S, Ashida H, Teaumroong N, Yoshida KI.
    J Gen Appl Microbiol; 2023 Dec 05; 69(3):175-183. PubMed ID: 36858546
    [Abstract] [Full Text] [Related]

  • 11. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome.
    Kudo K, Watanabe A, Ujiie S, Shintani T, Gomi K.
    J Biosci Bioeng; 2015 Dec 05; 120(6):614-23. PubMed ID: 25936960
    [Abstract] [Full Text] [Related]

  • 12. Optimizing dough proofing conditions to enhance isoflavone aglycones in soy bread.
    Riedl KM, Zhang YC, Schwartz SJ, Vodovotz Y.
    J Agric Food Chem; 2005 Oct 19; 53(21):8253-8. PubMed ID: 16218672
    [Abstract] [Full Text] [Related]

  • 13. [Study on isoflavone active aglycone preparation by immobilized beta-glucosidase from Aspergillus niger].
    Pan LH, Luo JP, Jiang ST.
    Sheng Wu Gong Cheng Xue Bao; 2007 Nov 19; 23(6):1060-4. PubMed ID: 18257237
    [Abstract] [Full Text] [Related]

  • 14. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones.
    Yan FY, Xia W, Zhang XX, Chen S, Nie XZ, Qian LC.
    J Zhejiang Univ Sci B; 2016 Jun 19; 17(6):455-64. PubMed ID: 27256679
    [Abstract] [Full Text] [Related]

  • 15. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ, Kim BN, Kim YS, Oh DK.
    J Agric Food Chem; 2012 Feb 15; 60(6):1535-41. PubMed ID: 22251001
    [Abstract] [Full Text] [Related]

  • 16. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides.
    Kim BN, Yeom SJ, Kim YS, Oh DK.
    Biotechnol Lett; 2012 Jan 15; 34(1):125-9. PubMed ID: 21898127
    [Abstract] [Full Text] [Related]

  • 17. Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species.
    Lim YJ, Lim B, Kim HY, Kwon SJ, Eom SH.
    Enzyme Microb Technol; 2020 Jan 15; 132():109394. PubMed ID: 31731960
    [Abstract] [Full Text] [Related]

  • 18. [Residues affecting hydrolysis of soy isoflavone glycosides, stability and catalytic properties of Thermotoga maritime β-glucosidase].
    Xue Y, Song X, Sun H, Cao Z.
    Prikl Biokhim Mikrobiol; 2013 Jan 15; 49(5):457-66. PubMed ID: 25474868
    [Abstract] [Full Text] [Related]

  • 19. A Novel Thermostable GH3 β-Glucosidase from Talaromyce leycettanus with Broad Substrate Specificity and Significant Soybean Isoflavone Glycosides-Hydrolyzing Capability.
    Li X, Xia W, Bai Y, Ma R, Yang H, Luo H, Shi P.
    Biomed Res Int; 2018 Jan 15; 2018():4794690. PubMed ID: 30426008
    [Abstract] [Full Text] [Related]

  • 20. Isoflavone phytoestrogen degradation in fermented soymilk with selected beta-glucosidase producing L. acidophilus strains during storage at different temperatures.
    Otieno DO, Ashton JF, Shah NP.
    Int J Food Microbiol; 2007 Apr 01; 115(1):79-88. PubMed ID: 17174431
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.