These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 2602377

  • 1. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle.
    Rothschild KJ, He YW, Gray D, Roepe PD, Pelletier SL, Brown RS, Herzfeld J.
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9832-5. PubMed ID: 2602377
    [Abstract] [Full Text] [Related]

  • 2. Fourier transform infrared study of the halorhodopsin chloride pump.
    Rothschild KJ, Bousché O, Braiman MS, Hasselbacher CA, Spudich JL.
    Biochemistry; 1988 Apr 05; 27(7):2420-4. PubMed ID: 3382631
    [Abstract] [Full Text] [Related]

  • 3. Vibrational spectroscopy of bacteriorhodopsin mutants: evidence for the interaction of proline-186 with the retinylidene chromophore.
    Rothschild KJ, He YW, Mogi T, Marti T, Stern LJ, Khorana HG.
    Biochemistry; 1990 Jun 26; 29(25):5954-60. PubMed ID: 2166567
    [Abstract] [Full Text] [Related]

  • 4. Evidence for light-induced lysine conformational changes during the primary event of the bacteriorhodopsin photocycle.
    McMaster E, Lewis A.
    Biochem Biophys Res Commun; 1988 Oct 14; 156(1):86-91. PubMed ID: 3140817
    [Abstract] [Full Text] [Related]

  • 5. Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86.
    Rothschild KJ, Gray D, Mogi T, Marti T, Braiman MS, Stern LJ, Khorana HG.
    Biochemistry; 1989 Aug 22; 28(17):7052-9. PubMed ID: 2819048
    [Abstract] [Full Text] [Related]

  • 6. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212.
    Braiman MS, Mogi T, Marti T, Stern LJ, Khorana HG, Rothschild KJ.
    Biochemistry; 1988 Nov 15; 27(23):8516-20. PubMed ID: 2851326
    [Abstract] [Full Text] [Related]

  • 7. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates.
    Roepe P, Ahl PL, Das Gupta SK, Herzfeld J, Rothschild KJ.
    Biochemistry; 1987 Oct 20; 26(21):6696-707. PubMed ID: 3427038
    [Abstract] [Full Text] [Related]

  • 8. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy.
    Ahl PL, Stern LJ, Düring D, Mogi T, Khorana HG, Rothschild KJ.
    J Biol Chem; 1988 Sep 25; 263(27):13594-601. PubMed ID: 3047127
    [Abstract] [Full Text] [Related]

  • 9. Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry.
    Gat Y, Grossjean M, Pinevsky I, Takei H, Rothman Z, Sigrist H, Lewis A, Sheves M.
    Proc Natl Acad Sci U S A; 1992 Mar 15; 89(6):2434-8. PubMed ID: 1549607
    [Abstract] [Full Text] [Related]

  • 10. Characterization of the conformational change in the M1 and M2 substates of bacteriorhodopsin by the combined use of visible and infrared spectroscopy.
    Perkins GA, Liu E, Burkard F, Berry EA, Glaeser RM.
    J Struct Biol; 1992 Mar 15; 109(2):142-51. PubMed ID: 1288615
    [Abstract] [Full Text] [Related]

  • 11. Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling.
    Lin SL, Ormos P, Eisenstein L, Govindjee R, Konno K, Nakanishi K.
    Biochemistry; 1987 Dec 15; 26(25):8327-31. PubMed ID: 3442658
    [Abstract] [Full Text] [Related]

  • 12. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature.
    He Y, Krebs MP, Fischer WB, Khorana HG, Rothschild KJ.
    Biochemistry; 1993 Mar 09; 32(9):2282-90. PubMed ID: 8443171
    [Abstract] [Full Text] [Related]

  • 13. Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin.
    Chang CH, Govindjee R, Ebrey T, Bagley KA, Dollinger G, Eisenstein L, Marque J, Roder H, Vittitow J, Fang JM.
    Biophys J; 1985 Apr 09; 47(4):509-12. PubMed ID: 2985136
    [Abstract] [Full Text] [Related]

  • 14. Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates.
    Braiman MS, Bousché O, Rothschild KJ.
    Proc Natl Acad Sci U S A; 1991 Mar 15; 88(6):2388-92. PubMed ID: 2006176
    [Abstract] [Full Text] [Related]

  • 15. Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle.
    Rothschild KJ, Roepe P, Lugtenburg J, Pardoen JA.
    Biochemistry; 1984 Dec 04; 23(25):6103-9. PubMed ID: 6525348
    [Abstract] [Full Text] [Related]

  • 16. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy.
    Maeda A, Sasaki J, Shichida Y, Yoshizawa T.
    Biochemistry; 1992 Jan 21; 31(2):462-7. PubMed ID: 1731905
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Conformational changes in bacteriorhodopsin studied by infrared attenuated total reflection.
    Marrero H, Rothschild KJ.
    Biophys J; 1987 Oct 21; 52(4):629-35. PubMed ID: 3676442
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
    Bagley K, Dollinger G, Eisenstein L, Singh AK, Zimányi L.
    Proc Natl Acad Sci U S A; 1982 Aug 21; 79(16):4972-6. PubMed ID: 6956906
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.