These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 2602383

  • 1. Visualization of crystallin droplets associated with cold cataract formation in young intact rat lens.
    Lo WK.
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9926-30. PubMed ID: 2602383
    [Abstract] [Full Text] [Related]

  • 2. Spatial reorganization of low-molecular-weight proteins during cold cataract opacification.
    Gulik-Krzywicki T, Tardieu A, Delaye M.
    Biochim Biophys Acta; 1984 Jul 16; 800(1):28-32. PubMed ID: 6743682
    [Abstract] [Full Text] [Related]

  • 3. Opacification of gamma-crystallin solutions from calf lens in relation to cold cataract formation.
    Siezen RJ, Fisch MR, Slingsby C, Benedek GB.
    Proc Natl Acad Sci U S A; 1985 Mar 16; 82(6):1701-5. PubMed ID: 3856852
    [Abstract] [Full Text] [Related]

  • 4. NMR analyses of the cold cataract. II. Studies on protein solutions.
    Lerman S, Megaw JM, Gardner K, Ashley D, Long RC, Goldstein JH.
    Invest Ophthalmol Vis Sci; 1983 Jan 16; 24(1):99-105. PubMed ID: 6826319
    [Abstract] [Full Text] [Related]

  • 5. Lens development and crystallin distribution of the early onset hereditary cataract in the UPL rat.
    Tomohiro M, Murata S, Yazawa K, Shinzawa S, Maruyama Y, Uga S, Mizuno A, Sakuma S.
    Jpn J Ophthalmol; 1996 Jan 16; 40(1):42-52. PubMed ID: 8739499
    [Abstract] [Full Text] [Related]

  • 6. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman.
    Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski CF, Devries AL, Cheng CH.
    J Exp Biol; 2004 Dec 16; 207(Pt 26):4633-49. PubMed ID: 15579559
    [Abstract] [Full Text] [Related]

  • 7. Identification of the scattering elements responsible for lens opacification in cold cataracts.
    Delaye M, Clark JI, Benedek GB.
    Biophys J; 1982 Mar 16; 37(3):647-56. PubMed ID: 7074190
    [Abstract] [Full Text] [Related]

  • 8. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.
    Andley UP, Goldman JW.
    Biochim Biophys Acta; 2016 Jan 16; 1860(1 Pt B):234-9. PubMed ID: 26071686
    [Abstract] [Full Text] [Related]

  • 9. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis.
    Simpanya MF, Ansari RR, Suh KI, Leverenz VR, Giblin FJ.
    Invest Ophthalmol Vis Sci; 2005 Dec 16; 46(12):4641-51. PubMed ID: 16303961
    [Abstract] [Full Text] [Related]

  • 10. Globular bodies: a primary cause of the opacity in senile and diabetic posterior cortical subcapsular cataracts?
    Creighton MO, Trevithick JR, Mousa GY, Percy DH, McKinna AJ, Dyson C, Maisel H, Bradley R.
    Can J Ophthalmol; 1978 Jul 16; 13(3):166-81. PubMed ID: 698889
    [Abstract] [Full Text] [Related]

  • 11. delta-crystallin synthesis and vacuole formation during induced opacification of cultured embryonic chick lenses.
    Shinohara T, Robison WG, Piatigorsky J.
    Invest Ophthalmol Vis Sci; 1978 Jun 16; 17(6):515-22. PubMed ID: 659072
    [No Abstract] [Full Text] [Related]

  • 12. Raman spectroscopic evidence for the microenvironmental change of some tyrosine residues of lens proteins in cold cataract.
    Mizuno A, Ozaki Y, Itoh K, Matsushima S, Iriyama K.
    Biochem Biophys Res Commun; 1984 Mar 30; 119(3):989-94. PubMed ID: 6712681
    [Abstract] [Full Text] [Related]

  • 13. Functional and structural studies of alpha-crystallin from galactosemic rat lenses.
    Huang FY, Ho Y, Shaw TS, Chuang SA.
    Biochem Biophys Res Commun; 2000 Jun 24; 273(1):197-202. PubMed ID: 10873586
    [Abstract] [Full Text] [Related]

  • 14. Three distinct stages of lens opacification in transgenic mice expressing the HIV-1 protease.
    Tumminia SJ, Clark JI, Richiert DM, Mitton KP, Duglas-Tabor Y, Kowalak JA, Garland DL, Russell P.
    Exp Eye Res; 2001 Feb 24; 72(2):115-21. PubMed ID: 11161727
    [Abstract] [Full Text] [Related]

  • 15. Neutron scattering by calf lens cytoplasm. A comparison between two models of cataract.
    Laporte D, Delaye M.
    Eur Biophys J; 1987 Feb 24; 14(7):441-7. PubMed ID: 3608932
    [Abstract] [Full Text] [Related]

  • 16. Crystallin degradation and insolubilization in regions of young rat lens with calcium ionophore cataract.
    Iwasaki N, David LL, Shearer TR.
    Invest Ophthalmol Vis Sci; 1995 Feb 24; 36(2):502-9. PubMed ID: 7843919
    [Abstract] [Full Text] [Related]

  • 17. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y, Yi L, Yan G, Fang Y, Jang Y, Wu X, Zhou X, Wei L.
    Curr Eye Res; 2010 Jul 24; 35(7):620-30. PubMed ID: 20597648
    [Abstract] [Full Text] [Related]

  • 18. Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor beta.
    Liu J, Hales AM, Chamberlain CG, McAvoy JW.
    Invest Ophthalmol Vis Sci; 1994 Feb 24; 35(2):388-401. PubMed ID: 8112986
    [Abstract] [Full Text] [Related]

  • 19. Heat treatment of soluble proteins isolated from human cataract lens leads to the formation of non-fibrillar amyloid-like protein aggregates.
    Mittal C, Kumari A, De I, Singh M, Harsolia R, Yadav JK.
    Int J Biol Macromol; 2021 Oct 01; 188():512-522. PubMed ID: 34333005
    [Abstract] [Full Text] [Related]

  • 20. In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress.
    Weinreb O, van Rijk AF, Dovrat A, Bloemendal H.
    Invest Ophthalmol Vis Sci; 2000 Nov 01; 41(12):3893-7. PubMed ID: 11053291
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.