These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
267 related items for PubMed ID: 26024084
1. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Kumar B, Kowluru A, Kowluru RA. Invest Ophthalmol Vis Sci; 2015 May; 56(5):2985-92. PubMed ID: 26024084 [Abstract] [Full Text] [Related]
2. Regulation of serine palmitoyl-transferase and Rac1-Nox2 signaling in diabetic retinopathy. Alka K, Mohammad G, Kowluru RA. Sci Rep; 2022 Oct 06; 12(1):16740. PubMed ID: 36202842 [Abstract] [Full Text] [Related]
3. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Kowluru RA, Kowluru A, Veluthakal R, Mohammad G, Syed I, Santos JM, Mishra M. Diabetologia; 2014 May 06; 57(5):1047-56. PubMed ID: 24554007 [Abstract] [Full Text] [Related]
4. Adaptor Protein p66Shc: A Link Between Cytosolic and Mitochondrial Dysfunction in the Development of Diabetic Retinopathy. Mishra M, Duraisamy AJ, Bhattacharjee S, Kowluru RA. Antioxid Redox Signal; 2019 May 01; 30(13):1621-1634. PubMed ID: 30105917 [Abstract] [Full Text] [Related]
5. Functional Regulation of an Oxidative Stress Mediator, Rac1, in Diabetic Retinopathy. Mohammad G, Duraisamy AJ, Kowluru A, Kowluru RA. Mol Neurobiol; 2019 Dec 01; 56(12):8643-8655. PubMed ID: 31300985 [Abstract] [Full Text] [Related]
6. Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia. Mishra M, Kowluru RA. Invest Ophthalmol Vis Sci; 2014 Sep 23; 55(10):6960-7. PubMed ID: 25249609 [Abstract] [Full Text] [Related]
7. A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy. Santos JM, Tewari S, Kowluru RA. Free Radic Biol Med; 2012 Nov 01; 53(9):1729-37. PubMed ID: 22982046 [Abstract] [Full Text] [Related]
8. Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Kowluru RA, Mishra M, Kowluru A, Kumar B. Metabolism; 2016 Oct 01; 65(10):1570-81. PubMed ID: 27621192 [Abstract] [Full Text] [Related]
14. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy. Tewari S, Santos JM, Kowluru RA. Antioxid Redox Signal; 2012 Aug 01; 17(3):492-504. PubMed ID: 22229649 [Abstract] [Full Text] [Related]
15. Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon. Santos JM, Mishra M, Kowluru RA. Exp Eye Res; 2014 Apr 01; 121():168-77. PubMed ID: 24607487 [Abstract] [Full Text] [Related]
17. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid. Santos JM, Kowluru RA. Invest Ophthalmol Vis Sci; 2011 Nov 11; 52(12):8791-8. PubMed ID: 22003111 [Abstract] [Full Text] [Related]