These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
237 related items for PubMed ID: 26024338
1. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway. Zhang J, Hwang TC. Biochemistry; 2015 Jun 23; 54(24):3839-50. PubMed ID: 26024338 [Abstract] [Full Text] [Related]
2. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation. Gao X, Bai Y, Hwang TC. Biophys J; 2013 Feb 19; 104(4):786-97. PubMed ID: 23442957 [Abstract] [Full Text] [Related]
3. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. El Hiani Y, Linsdell P. J Biol Chem; 2010 Oct 15; 285(42):32126-40. PubMed ID: 20675380 [Abstract] [Full Text] [Related]
4. Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway. Gao X, Hwang TC. J Gen Physiol; 2016 May 15; 147(5):407-22. PubMed ID: 27114613 [Abstract] [Full Text] [Related]
5. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. Bai Y, Li M, Hwang TC. J Gen Physiol; 2010 Sep 15; 136(3):293-309. PubMed ID: 20805575 [Abstract] [Full Text] [Related]
6. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines. Fatehi M, Linsdell P. J Membr Biol; 2009 Apr 15; 228(3):151-64. PubMed ID: 19381710 [Abstract] [Full Text] [Related]
7. Localizing a gate in CFTR. Gao X, Hwang TC. Proc Natl Acad Sci U S A; 2015 Feb 24; 112(8):2461-6. PubMed ID: 25675504 [Abstract] [Full Text] [Related]
8. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Wang W, El Hiani Y, Linsdell P. J Gen Physiol; 2011 Aug 24; 138(2):165-78. PubMed ID: 21746847 [Abstract] [Full Text] [Related]
9. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Wang W, El Hiani Y, Rubaiy HN, Linsdell P. Pflugers Arch; 2014 Mar 24; 466(3):477-90. PubMed ID: 23955087 [Abstract] [Full Text] [Related]
10. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore. Negoda A, Hogan MS, Cowley EA, Linsdell P. Cell Mol Life Sci; 2019 Jun 24; 76(12):2411-2423. PubMed ID: 30758641 [Abstract] [Full Text] [Related]
11. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant. Qian F, El Hiani Y, Linsdell P. Pflugers Arch; 2011 Oct 24; 462(4):559-71. PubMed ID: 21796338 [Abstract] [Full Text] [Related]
12. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). Bai Y, Li M, Hwang TC. J Gen Physiol; 2011 Nov 24; 138(5):495-507. PubMed ID: 22042986 [Abstract] [Full Text] [Related]
13. Electrostatic tuning of the pre- and post-hydrolytic open states in CFTR. Zhang J, Hwang TC. J Gen Physiol; 2017 Mar 06; 149(3):355-372. PubMed ID: 28242630 [Abstract] [Full Text] [Related]
14. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). Wang W, Linsdell P. J Biol Chem; 2012 Mar 23; 287(13):10156-10165. PubMed ID: 22303012 [Abstract] [Full Text] [Related]
15. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway. Liu X, Dawson DC. Biochemistry; 2011 Nov 29; 50(47):10311-7. PubMed ID: 22014307 [Abstract] [Full Text] [Related]
16. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. El Hiani Y, Linsdell P. J Biol Chem; 2014 Oct 10; 289(41):28149-59. PubMed ID: 25143385 [Abstract] [Full Text] [Related]
17. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC. Biochemistry; 2009 Oct 27; 48(42):10078-88. PubMed ID: 19754156 [Abstract] [Full Text] [Related]
18. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel. El Hiani Y, Linsdell P. Biochemistry; 2012 May 15; 51(19):3971-81. PubMed ID: 22545782 [Abstract] [Full Text] [Related]
19. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. Wang W, Linsdell P. Biochim Biophys Acta; 2012 Mar 15; 1818(3):851-60. PubMed ID: 22234285 [Abstract] [Full Text] [Related]
20. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Akabas MH. Biochemistry; 1998 Sep 01; 37(35):12233-40. PubMed ID: 9724537 [Abstract] [Full Text] [Related] Page: [Next] [New Search]