These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 26026043
1. Daily temperature extremes play an important role in predicting thermal effects. Ma G, Hoffmann AA, Ma CS. J Exp Biol; 2015 Jul; 218(Pt 14):2289-96. PubMed ID: 26026043 [Abstract] [Full Text] [Related]
2. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. Zhao F, Zhang W, Hoffmann AA, Ma CS. J Anim Ecol; 2014 Jul; 83(4):769-78. PubMed ID: 24372332 [Abstract] [Full Text] [Related]
3. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects. Zhu L, Wang L, Ma CS. J Insect Physiol; 2019 Jan; 112():48-56. PubMed ID: 30529236 [Abstract] [Full Text] [Related]
4. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid? Ma G, Hoffmann AA, Ma CS. J Therm Biol; 2021 May; 98():102936. PubMed ID: 34016358 [Abstract] [Full Text] [Related]
5. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming. Ma G, Ma CS. J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662 [Abstract] [Full Text] [Related]
6. The importance of timing of heat events for predicting the dynamics of aphid pest populations. Zhao F, Xing K, Hoffmann AA, Ma CS. Pest Manag Sci; 2019 Jul; 75(7):1866-1874. PubMed ID: 30663223 [Abstract] [Full Text] [Related]
7. Life stages of an aphid living under similar thermal conditions differ in thermal performance. Zhao F, Hoffmann AA, Xing K, Ma CS. J Insect Physiol; 2017 May; 99():1-7. PubMed ID: 28283383 [Abstract] [Full Text] [Related]
8. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora. Chen CY, Chiu MC, Kuo MH. Bull Entomol Res; 2013 Aug; 103(4):406-13. PubMed ID: 23448233 [Abstract] [Full Text] [Related]
9. Extreme temperature events alter demographic rates, relative fitness, and community structure. Ma G, Rudolf VH, Ma CS. Glob Chang Biol; 2015 May; 21(5):1794-808. PubMed ID: 24909842 [Abstract] [Full Text] [Related]
16. Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). Powell SJ, Bale JS. J Insect Physiol; 2004 Apr; 50(4):277-84. PubMed ID: 15081820 [Abstract] [Full Text] [Related]
17. Interspecific differences in thermal tolerance landscape explain aphid community abundance under climate change. Li YJ, Chen SY, Jørgensen LB, Overgaard J, Renault D, Colinet H, Ma CS. J Therm Biol; 2023 May; 114():103583. PubMed ID: 37270894 [Abstract] [Full Text] [Related]
18. Impacts of Water Deficiency on Life History of Sitobion avenae Clones From Semi-arid and Moist Areas. Dai P, Liu D, Shi X. J Econ Entomol; 2015 Oct; 108(5):2250-8. PubMed ID: 26453713 [Abstract] [Full Text] [Related]
19. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Powell SJ, Bale JS. J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747 [Abstract] [Full Text] [Related]
20. Complex delayed and transgenerational effects driven by the interaction of heat and insecticide in the maternal generation of the wheat aphid, Sitobion avenae. Cao JY, Xing K, Zhao F. Pest Manag Sci; 2021 Oct; 77(10):4453-4461. PubMed ID: 34002463 [Abstract] [Full Text] [Related] Page: [Next] [New Search]