These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


360 related items for PubMed ID: 26027971

  • 1. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.
    Edwards M, Nathanson A, Carroll J, Wisch M, Zander O, Lubbe N.
    Traffic Inj Prev; 2015; 16 Suppl 1():S2-S11. PubMed ID: 26027971
    [Abstract] [Full Text] [Related]

  • 2. Estimate of potential benefit for Europe of fitting Autonomous Emergency Braking (AEB) systems for pedestrian protection to passenger cars.
    Edwards M, Nathanson A, Wisch M.
    Traffic Inj Prev; 2014; 15 Suppl 1():S173-82. PubMed ID: 25307384
    [Abstract] [Full Text] [Related]

  • 3. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking.
    Jeppsson H, Östling M, Lubbe N.
    Accid Anal Prev; 2018 Feb; 111():311-320. PubMed ID: 29257980
    [Abstract] [Full Text] [Related]

  • 4. Integrated assessment of pedestrian head impact protection in testing secondary safety and autonomous emergency braking.
    Searson DJ, Anderson RW, Hutchinson TP.
    Accid Anal Prev; 2014 Feb; 63():1-8. PubMed ID: 24246294
    [Abstract] [Full Text] [Related]

  • 5. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H, Lubbe N.
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [Abstract] [Full Text] [Related]

  • 6. Have pedestrian subsystem tests improved passenger car front shape?
    Li G, Wang F, Otte D, Cai Z, Simms C.
    Accid Anal Prev; 2018 Jun; 115():143-150. PubMed ID: 29571012
    [Abstract] [Full Text] [Related]

  • 7. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States.
    Haus SH, Sherony R, Gabler HC.
    Traffic Inj Prev; 2019 Jun; 20(sup1):S171-S176. PubMed ID: 31381447
    [Abstract] [Full Text] [Related]

  • 8. Correlation Between Euro NCAP Pedestrian Test Results and Injury Severity in Injury Crashes with Pedestrians and Bicyclists in Sweden.
    Strandroth J, Sternlund S, Lie A, Tingvall C, Rizzi M, Kullgren A, Ohlin M, Fredriksson R.
    Stapp Car Crash J; 2014 Nov; 58():213-31. PubMed ID: 26192956
    [Abstract] [Full Text] [Related]

  • 9. The correlation between pedestrian injury severity in real-life crashes and Euro NCAP pedestrian test results.
    Strandroth J, Rizzi M, Sternlund S, Lie A, Tingvall C.
    Traffic Inj Prev; 2011 Dec; 12(6):604-13. PubMed ID: 22133337
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts.
    Nie B, Zhou Q.
    Traffic Inj Prev; 2016 Oct 02; 17(7):712-9. PubMed ID: 26890318
    [Abstract] [Full Text] [Related]

  • 12. Pedestrian injury mitigation by autonomous braking.
    Rosén E, Källhammer JE, Eriksson D, Nentwich M, Fredriksson R, Smith K.
    Accid Anal Prev; 2010 Nov 02; 42(6):1949-57. PubMed ID: 20728647
    [Abstract] [Full Text] [Related]

  • 13. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.
    Fredriksson R, Shin J, Untaroiu CD.
    Traffic Inj Prev; 2011 Aug 02; 12(4):398-411. PubMed ID: 21823948
    [Abstract] [Full Text] [Related]

  • 14. Prospective assessment of the effectiveness of autonomous emergency braking in car-to-cyclist accidents in France.
    Chajmowicz H, Saadé J, Cuny S.
    Traffic Inj Prev; 2019 Aug 02; 20(sup2):S20-S25. PubMed ID: 31750740
    [Abstract] [Full Text] [Related]

  • 15. Evaluating automated emergency braking performance in simulated car-to-two-wheeler crashes in China: A comparison between C-NCAP tests and in-depth crash data.
    Sui B, Lubbe N, Bärgman J.
    Accid Anal Prev; 2021 Sep 02; 159():106229. PubMed ID: 34225169
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of the crash mitigation effect of low-speed automated emergency braking systems based on insurance claims data.
    Isaksson-Hellman I, Lindman M.
    Traffic Inj Prev; 2016 Sep 02; 17 Suppl 1():42-7. PubMed ID: 27586101
    [Abstract] [Full Text] [Related]

  • 17. Research of fatal car-to-pedestrian precrash scenarios for the testing of the active safety system in China.
    Tan Z, Che Y, Xiao L, Hu W, Li P, Xu J.
    Accid Anal Prev; 2021 Feb 02; 150():105857. PubMed ID: 33285448
    [Abstract] [Full Text] [Related]

  • 18. Market penetration of intersection AEB: Characterizing avoided and residual straight crossing path accidents.
    Sander U, Lubbe N.
    Accid Anal Prev; 2018 Jun 02; 115():178-188. PubMed ID: 29604516
    [Abstract] [Full Text] [Related]

  • 19. Intersection AEB implementation strategies for left turn across path crashes.
    Sander U, Lubbe N, Pietzsch S.
    Traffic Inj Prev; 2019 Jun 02; 20(sup1):S119-S125. PubMed ID: 31381448
    [Abstract] [Full Text] [Related]

  • 20. Issues and challenges for pedestrian active safety systems based on real world accidents.
    Hamdane H, Serre T, Masson C, Anderson R.
    Accid Anal Prev; 2015 Sep 02; 82():53-60. PubMed ID: 26047007
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.