These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
70 related items for PubMed ID: 26032497
1. Five pectinase gene expressions highly responding to heat stress in rice floral organs revealed by RNA-seq analysis. Wu L, Taohua Z, Gui W, Xu L, Li J, Ding Y. Biochem Biophys Res Commun; 2015 Jul 31; 463(3):407-13. PubMed ID: 26032497 [Abstract] [Full Text] [Related]
2. RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Yang SY, Hao DL, Song ZZ, Yang GZ, Wang L, Su YH. Gene; 2015 Jan 25; 555(2):305-17. PubMed ID: 25447912 [Abstract] [Full Text] [Related]
3. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.). Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. PLoS One; 2015 Jan 25; 10(12):e0145532. PubMed ID: 26714321 [Abstract] [Full Text] [Related]
4. Genome-Wide Transcriptome Analysis During Anthesis Reveals New Insights into the Molecular Basis of Heat Stress Responses in Tolerant and Sensitive Rice Varieties. González-Schain N, Dreni L, Lawas LM, Galbiati M, Colombo L, Heuer S, Jagadish KS, Kater MM. Plant Cell Physiol; 2016 Jan 25; 57(1):57-68. PubMed ID: 26561535 [Abstract] [Full Text] [Related]
5. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, Chen X, Xiong X. Gene; 2013 Nov 10; 530(2):185-92. PubMed ID: 23994682 [Abstract] [Full Text] [Related]
6. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha DK, Jagadish KS. Plant Cell Environ; 2015 Oct 10; 38(10):2171-92. PubMed ID: 25828772 [Abstract] [Full Text] [Related]
7. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. BMC Genomics; 2015 Nov 17; 16():959. PubMed ID: 26576634 [Abstract] [Full Text] [Related]
8. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Zhu Y, Li Y, Xin D, Chen W, Shao X, Wang Y, Guo W. Gene; 2015 Jan 25; 555(2):362-76. PubMed ID: 25447903 [Abstract] [Full Text] [Related]
9. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). Rana RM, Dong S, Tang H, Ahmad F, Zhang H. J Exp Bot; 2012 Oct 25; 63(16):6003-16. PubMed ID: 22996677 [Abstract] [Full Text] [Related]
10. Identification of differentially expressed genes in Chrysanthemum nankingense (Asteraceae) under heat stress by RNA Seq. Sun J, Ren L, Cheng Y, Gao J, Dong B, Chen S, Chen F, Jiang J. Gene; 2014 Nov 15; 552(1):59-66. PubMed ID: 25200493 [Abstract] [Full Text] [Related]
11. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. Jin Y, Yang H, Wei Z, Ma H, Ge X. Mol Plant; 2013 Sep 15; 6(5):1630-45. PubMed ID: 23604203 [Abstract] [Full Text] [Related]
12. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Plant J; 2010 Mar 15; 61(5):767-81. PubMed ID: 20003164 [Abstract] [Full Text] [Related]
13. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. J Genet Genomics; 2008 Feb 15; 35(2):105-18. PubMed ID: 18407058 [Abstract] [Full Text] [Related]
14. Transcriptome analysis of grain-filling caryopses reveals the potential formation mechanism of the rice sugary mutant. Li FP, Yoon MY, Li G, Ra WH, Park JW, Kwon SJ, Kwon SW, Ahn IP, Park YJ. Gene; 2014 Aug 10; 546(2):318-26. PubMed ID: 24875416 [Abstract] [Full Text] [Related]
15. Differential expression of heat shock and floral regulatory genes in pseudocarpel initials of mantled female inflorescences from Elaeis guineensis Jacq. Ooi SE, Sarpan N, Abdul Aziz N, Nuraziyan A, Ong-Abdullah M. Plant Reprod; 2019 Jun 10; 32(2):167-179. PubMed ID: 30467592 [Abstract] [Full Text] [Related]
16. Genome-wide transcriptome profiles of rice hybrids and their parents. E Z, Huang S, Zhang Y, Ge L, Wang L. Int J Mol Sci; 2014 Nov 13; 15(11):20833-45. PubMed ID: 25402644 [Abstract] [Full Text] [Related]
17. Transcriptome Analyses Provide Novel Insights into Heat Stress Responses in Chieh-Qua (Benincasa hispida Cogn. var. Chieh-Qua How). Wang M, Jiang B, Liu W, Lin Y, Liang Z, He X, Peng Q. Int J Mol Sci; 2019 Feb 18; 20(4):. PubMed ID: 30781658 [Abstract] [Full Text] [Related]
18. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M. Plant J; 2011 May 18; 66(4):603-12. PubMed ID: 21284756 [Abstract] [Full Text] [Related]
19. Heat shock-induced biphasic Ca(2+) signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Wu HC, Luo DL, Vignols F, Jinn TL. Plant Cell Environ; 2012 Sep 18; 35(9):1543-57. PubMed ID: 22428987 [Abstract] [Full Text] [Related]
20. Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Peña-Castro JM, van Zanten M, Lee SC, Patel MR, Voesenek LA, Fukao T, Bailey-Serres J. Plant J; 2011 Aug 18; 67(3):434-46. PubMed ID: 21481028 [Abstract] [Full Text] [Related] Page: [Next] [New Search]