These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
704 related items for PubMed ID: 26034990
21. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. Azad P, Zhou D, Russo E, Haddad GG. PLoS One; 2009; 4(4):e5371. PubMed ID: 19401761 [Abstract] [Full Text] [Related]
22. Gene and protein expression of Drosophila Starvin during cold stress and recovery from chill coma. Colinet H, Hoffmann A. Insect Biochem Mol Biol; 2010 May; 40(5):425-8. PubMed ID: 20303406 [Abstract] [Full Text] [Related]
23. A Drosophila heat shock response represents an exception rather than a rule amongst Diptera species. Zatsepina OG, Przhiboro AA, Yushenova IA, Shilova V, Zelentsova ES, Shostak NG, Evgen'ev MB, Garbuz DG. Insect Mol Biol; 2016 Aug; 25(4):431-49. PubMed ID: 27089053 [Abstract] [Full Text] [Related]
24. Acclimation, duration and intensity of cold exposure determine the rate of cold stress accumulation and mortality in Drosophila suzukii. Tarapacki P, Jørgensen LB, Sørensen JG, Andersen MK, Colinet H, Overgaard J. J Insect Physiol; 2021 Aug; 135():104323. PubMed ID: 34717940 [Abstract] [Full Text] [Related]
25. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana. Cheng W, Li D, Wang Y, Liu Y, Zhu-Salzman K. J Insect Physiol; 2016 Dec; 95():66-77. PubMed ID: 27639943 [Abstract] [Full Text] [Related]
26. Elevated chaperone proteins are a feature of winter freeze avoidance by larvae of the goldenrod gall moth, Epiblema scudderiana. Zhang G, Storey JM, Storey KB. J Insect Physiol; 2018 Apr; 106(Pt 2):106-113. PubMed ID: 28433751 [Abstract] [Full Text] [Related]
27. Menin is a regulator of the stress response in Drosophila melanogaster. Papaconstantinou M, Wu Y, Pretorius HN, Singh N, Gianfelice G, Tanguay RM, Campos AR, Bédard PA. Mol Cell Biol; 2005 Nov; 25(22):9960-72. PubMed ID: 16260610 [Abstract] [Full Text] [Related]
28. [Analysis of heat shock proteins and thermotolerance in a thermoresistant strain of Drosophila melanogaster]. Molodtsov VB, Velikodvorskaia VV, Garbuz DG, Zatsepina OG, Evgen'ev MB. Izv Akad Nauk Ser Biol; 2001 Nov; (5):522-32. PubMed ID: 15926315 [Abstract] [Full Text] [Related]
29. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change. Stitt BC, Burness G, Burgomaster KA, Currie S, McDermid JL, Wilson CC. Physiol Biochem Zool; 2014 Nov; 87(1):15-29. PubMed ID: 24457918 [Abstract] [Full Text] [Related]
30. Inducing extra copies of the Hsp70 gene in Drosophila melanogaster increases energetic demand. Hoekstra LA, Montooth KL. BMC Evol Biol; 2013 Mar 19; 13():68. PubMed ID: 23510136 [Abstract] [Full Text] [Related]
31. [Evolution of the response to heat shock in genus Drosophila]. Garbuz DG, Molodtsov VB, Velikodvorskaia VV, Evgen'ev MB, Zatsepina OG. Genetika; 2002 Aug 19; 38(8):1097-109. PubMed ID: 12244694 [Abstract] [Full Text] [Related]
32. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. Gu LL, Li MZ, Wang GR, Liu XD. J Therm Biol; 2019 Apr 19; 81():103-109. PubMed ID: 30975406 [Abstract] [Full Text] [Related]
33. Regulation of heat shock proteins, Hsp70 and Hsp64, in heat-shocked Malpighian tubules of Drosophila melanogaster larvae. Lakhotia SC, Srivastava P, Prasanth KV. Cell Stress Chaperones; 2002 Oct 19; 7(4):347-56. PubMed ID: 12653479 [Abstract] [Full Text] [Related]
34. Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a quantitative trait locus region of chromosome 2 in Drosophila melanogaster. Norry FM, Gomez FH, Loeschcke V. Mol Ecol; 2007 Aug 19; 16(15):3274-84. PubMed ID: 17651203 [Abstract] [Full Text] [Related]
35. Molecular characterization of eight ATP-dependent heat shock protein transcripts and their expression profiles in response to stresses in the spruce budworm, Choristoneura fumiferana (L.). Quan G, Duan J, Fick W, Candau JN. J Therm Biol; 2020 Feb 19; 88():102493. PubMed ID: 32125981 [Abstract] [Full Text] [Related]
36. Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster. Feder ME, Bedford TB, Albright DR, Michalak P. Physiol Biochem Zool; 2002 Feb 19; 75(4):325-34. PubMed ID: 12324888 [Abstract] [Full Text] [Related]
37. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress. Boher F, Trefault N, Piulachs MD, Bellés X, Godoy-Herrera R, Bozinovic F. Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug 19; 162(4):391-6. PubMed ID: 22561660 [Abstract] [Full Text] [Related]
38. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Teigen LE, Orczewska JI, McLaughlin J, O'Brien KM. Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct 19; 188():139-47. PubMed ID: 26123780 [Abstract] [Full Text] [Related]
39. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins. Benoit JB, Lopez-Martinez G, Teets NM, Phillips SA, Denlinger DL. Med Vet Entomol; 2009 Dec 19; 23(4):418-25. PubMed ID: 19941608 [Abstract] [Full Text] [Related]
40. Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Farahani S, Bandani AR, Alizadeh H, Goldansaz SH, Whyard S. PLoS One; 2020 Dec 19; 15(1):e0228104. PubMed ID: 31995629 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]