These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Benzothiazoline: versatile hydrogen donor for organocatalytic transfer hydrogenation. Zhu C, Saito K, Yamanaka M, Akiyama T. Acc Chem Res; 2015 Feb 17; 48(2):388-98. PubMed ID: 25611073 [Abstract] [Full Text] [Related]
3. The mechanism for the hydrogenation of ketones catalyzed by Knölker's iron-catalyst. Lu X, Zhang Y, Yun P, Zhang M, Li T. Org Biomol Chem; 2013 Aug 28; 11(32):5264-77. PubMed ID: 23824054 [Abstract] [Full Text] [Related]
4. Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: a density functional theory study of reaction mechanism and the origins of enantioselectivity. Marcelli T, Hammar P, Himo F. Chemistry; 2008 Aug 28; 14(28):8562-71. PubMed ID: 18683177 [Abstract] [Full Text] [Related]
5. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. Chirik PJ. Acc Chem Res; 2015 Jun 16; 48(6):1687-95. PubMed ID: 26042837 [Abstract] [Full Text] [Related]
6. Homogenous Pd-catalyzed asymmetric hydrogenation of unprotected indoles: scope and mechanistic studies. Duan Y, Li L, Chen MW, Yu CB, Fan HJ, Zhou YG. J Am Chem Soc; 2014 May 28; 136(21):7688-700. PubMed ID: 24833267 [Abstract] [Full Text] [Related]
7. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design. Ge H, Chen X, Yang X. Chemistry; 2017 Jul 03; 23(37):8850-8856. PubMed ID: 28409860 [Abstract] [Full Text] [Related]
8. Computational Prediction of Chiral Iron Complexes for Asymmetric Transfer Hydrogenation of Pyruvic Acid to Lactic Acid. Wang W, Yang X. Molecules; 2020 Apr 20; 25(8):. PubMed ID: 32325984 [Abstract] [Full Text] [Related]
9. Cooperative catalysis: combining an achiral metal catalyst with a chiral Brønsted acid enables highly enantioselective hydrogenation of imines. Tang W, Johnston S, Li C, Iggo JA, Bacsa J, Xiao J. Chemistry; 2013 Oct 11; 19(42):14187-93. PubMed ID: 24019056 [Abstract] [Full Text] [Related]
13. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Friedfeld MR, Shevlin M, Hoyt JM, Krska SW, Tudge MT, Chirik PJ. Science; 2013 Nov 29; 342(6162):1076-80. PubMed ID: 24288328 [Abstract] [Full Text] [Related]
14. Theoretical study of the mechanism of hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. Simón L, Goodman JM. J Am Chem Soc; 2008 Jul 09; 130(27):8741-7. PubMed ID: 18543923 [Abstract] [Full Text] [Related]
16. High chemoselectivity of an advanced iron catalyst for the hydrogenation of aldehydes with isolated C═C bond: a computational study. Lu X, Cheng R, Turner N, Liu Q, Zhang M, Sun X. J Org Chem; 2014 Oct 03; 79(19):9355-64. PubMed ID: 25222376 [Abstract] [Full Text] [Related]
17. Mechanistic insight on the hydrogenation of conjugated alkenes with h(2) catalyzed by early main-group metal catalysts. Zeng G, Li S. Inorg Chem; 2010 Apr 05; 49(7):3361-9. PubMed ID: 20196551 [Abstract] [Full Text] [Related]
18. Chiral modification of platinum by co-adsorbed cinchonidine and trifluoroacetic acid: origin of enhanced stereocontrol in the hydrogenation of trifluoroacetophenone. Meemken F, Baiker A, Schenker S, Hungerbühler K. Chemistry; 2014 Jan 27; 20(5):1298-309. PubMed ID: 24382788 [Abstract] [Full Text] [Related]
20. A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide. Ge H, Chen X, Yang X. Chem Commun (Camb); 2016 Oct 13; 52(84):12422-12425. PubMed ID: 27606377 [Abstract] [Full Text] [Related] Page: [Next] [New Search]