These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
540 related items for PubMed ID: 26041448
1. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. O'Neill J, Fasching A, Pihl L, Patinha D, Franzén S, Palm F. Am J Physiol Renal Physiol; 2015 Aug 01; 309(3):F227-34. PubMed ID: 26041448 [Abstract] [Full Text] [Related]
2. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Welch WJ, Baumgärtl H, Lübbers D, Wilcox CS. Kidney Int; 2001 Jan 01; 59(1):230-7. PubMed ID: 11135075 [Abstract] [Full Text] [Related]
3. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Layton AT, Vallon V, Edwards A. Am J Physiol Renal Physiol; 2016 Jun 01; 310(11):F1269-83. PubMed ID: 26764207 [Abstract] [Full Text] [Related]
4. Endothelin type A receptor inhibition normalises intrarenal hypoxia in rats used as a model of type 1 diabetes by improving oxygen delivery. Franzén S, Palm F. Diabetologia; 2015 Oct 01; 58(10):2435-42. PubMed ID: 26173672 [Abstract] [Full Text] [Related]
5. Increased renal metabolism in diabetes. Mechanism and functional implications. Körner A, Eklöf AC, Celsi G, Aperia A. Diabetes; 1994 May 01; 43(5):629-33. PubMed ID: 8168637 [Abstract] [Full Text] [Related]
6. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass. Darby PJ, Kim N, Hare GM, Tsui A, Wang Z, Harrington A, Mazer CD. Perfusion; 2013 Nov 01; 28(6):504-11. PubMed ID: 23719516 [Abstract] [Full Text] [Related]
7. Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat. O'Neill J, Jasionek G, Drummond SE, Brett O, Lucking EF, Abdulla MA, O'Halloran KD. Am J Physiol Renal Physiol; 2019 Apr 01; 316(4):F635-F645. PubMed ID: 30648908 [Abstract] [Full Text] [Related]
8. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Layton AT, Vallon V, Edwards A. Am J Physiol Renal Physiol; 2015 Jun 15; 308(12):F1343-57. PubMed ID: 25855513 [Abstract] [Full Text] [Related]
9. Determinants of intrarenal oxygenation. I. Effects of diuretics. Brezis M, Agmon Y, Epstein FH. Am J Physiol; 1994 Dec 15; 267(6 Pt 2):F1059-62. PubMed ID: 7810692 [Abstract] [Full Text] [Related]
10. Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption. Nordquist L, Brown R, Fasching A, Persson P, Palm F. Am J Physiol Renal Physiol; 2009 Nov 15; 297(5):F1265-72. PubMed ID: 19741019 [Abstract] [Full Text] [Related]
11. Effects of furosemide on renal oxygen consumption after ischemia in normal and streptozotocin diabetic rats. Kuramochi G, Homma S. Nephron; 1993 Nov 15; 64(3):436-42. PubMed ID: 8341390 [Abstract] [Full Text] [Related]
12. Metformin attenuates renal medullary hypoxia in diabetic nephropathy through inhibition uncoupling protein-2. Christensen M, Schiffer TA, Gustafsson H, Krag SP, Nørregaard R, Palm F. Diabetes Metab Res Rev; 2019 Feb 15; 35(2):e3091. PubMed ID: 30345618 [Abstract] [Full Text] [Related]
13. Contribution of hyperglycemia on diabetic complications in obese type 2 diabetic SDT fatty rats: effects of SGLT inhibitor phlorizin. Katsuda Y, Sasase T, Tadaki H, Mera Y, Motohashi Y, Kemmochi Y, Toyoda K, Kakimoto K, Kume S, Ohta T. Exp Anim; 2015 Feb 15; 64(2):161-9. PubMed ID: 25736710 [Abstract] [Full Text] [Related]
14. Acute intrarenal angiotensin (1-7) infusion decreases diabetes-induced glomerular hyperfiltration but increases kidney oxygen consumption in the rat. Persson P, Fasching A, Palm F. Acta Physiol (Oxf); 2019 May 15; 226(1):e13254. PubMed ID: 30635985 [Abstract] [Full Text] [Related]
15. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors. Layton AT, Laghmani K, Vallon V, Edwards A. Am J Physiol Renal Physiol; 2016 Dec 01; 311(6):F1217-F1229. PubMed ID: 27707706 [Abstract] [Full Text] [Related]
16. Postischemic recovery process of renal oxygen consumption in normal and streptozotocin diabetic rats. Kuramochi G, Homma S. Ren Fail; 1993 Dec 01; 15(5):587-94. PubMed ID: 8290704 [Abstract] [Full Text] [Related]
17. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide. Koivisto A, Pittner J, Froelich M, Persson AE. Kidney Int; 1999 Jun 01; 55(6):2368-75. PubMed ID: 10354284 [Abstract] [Full Text] [Related]
18. Impact of sodium glucose linked cotransporter-2 inhibition on renal microvascular oxygen tension in a rodent model of diabetes mellitus. Hare GMT, Zhang Y, Chin K, Thai K, Jacobs E, Cazorla-Bak MP, Nghiem L, Wilson DF, Vinogradov SA, Connelly KA, Mazer CD, Evans RG, Gilbert RE. Physiol Rep; 2021 Jun 01; 9(12):e14890. PubMed ID: 34184431 [Abstract] [Full Text] [Related]
19. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO. Diabetologia; 2003 Aug 01; 46(8):1153-60. PubMed ID: 12879251 [Abstract] [Full Text] [Related]
20. Increased kidney metabolism as a pathway to kidney tissue hypoxia and damage: effects of triiodothyronine and dinitrophenol in normoglycemic rats. Friederich-Persson M, Persson P, Fasching A, Hansell P, Nordquist L, Palm F. Adv Exp Med Biol; 2013 Aug 01; 789():9-14. PubMed ID: 23852470 [Abstract] [Full Text] [Related] Page: [Next] [New Search]