These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
350 related items for PubMed ID: 26043092
1. A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M. Anal Chim Acta; 2015 Jul 02; 882():58-67. PubMed ID: 26043092 [Abstract] [Full Text] [Related]
2. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Xu H, Wang Y, Huang X, Li Y, Zhang H, Zhong X. Analyst; 2012 Feb 21; 137(4):924-31. PubMed ID: 22179771 [Abstract] [Full Text] [Related]
3. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles. Li ZJ, Zheng XJ, Zhang L, Liang RP, Li ZM, Qiu JD. Biosens Bioelectron; 2015 Jun 15; 68():668-674. PubMed ID: 25660511 [Abstract] [Full Text] [Related]
4. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles. Hormozi-Nezhad MR, Abbasi-Moayed S. Talanta; 2014 Nov 15; 129():227-32. PubMed ID: 25127588 [Abstract] [Full Text] [Related]
5. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J, Zhang Y, Li X, Miao L, Wu A. ACS Appl Mater Interfaces; 2016 Jan 13; 8(1):1-5. PubMed ID: 26673452 [Abstract] [Full Text] [Related]
6. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine. Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z. Analyst; 2011 Sep 21; 136(18):3725-30. PubMed ID: 21804959 [Abstract] [Full Text] [Related]
7. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Li Y, Wu P, Xu H, Zhang H, Zhong X. Analyst; 2011 Jan 07; 136(1):196-200. PubMed ID: 20931106 [Abstract] [Full Text] [Related]
8. Multidimensional colorimetric sensor array for discrimination of proteins. Mao J, Lu Y, Chang N, Yang J, Zhang S, Liu Y. Biosens Bioelectron; 2016 Dec 15; 86():56-61. PubMed ID: 27322936 [Abstract] [Full Text] [Related]
9. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Guo Y, Zhang Y, Shao H, Wang Z, Wang X, Jiang X. Anal Chem; 2014 Sep 02; 86(17):8530-4. PubMed ID: 25117533 [Abstract] [Full Text] [Related]
10. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Li L, Li B. Analyst; 2009 Jul 02; 134(7):1361-5. PubMed ID: 19562202 [Abstract] [Full Text] [Related]
11. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Zhang Y, Jiang J, Li M, Gao P, Zhou Y, Zhang G, Shuang S, Dong C. Talanta; 2016 Dec 01; 161():520-527. PubMed ID: 27769441 [Abstract] [Full Text] [Related]
15. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles. Mohammadi S, Khayatian G. Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct 05; 185():27-34. PubMed ID: 28531847 [Abstract] [Full Text] [Related]
19. Label-free gold nanorods sensor array for colorimetric detection and discrimination of biothiols in human urine samples. Yuan D, Liu JJ, Yan HH, Li CM, Huang CZ, Wang J. Talanta; 2019 Oct 01; 203():220-226. PubMed ID: 31202329 [Abstract] [Full Text] [Related]