These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


604 related items for PubMed ID: 26051875

  • 1. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.
    van der Bij HE, Weckhuysen BM.
    Chem Soc Rev; 2015 Oct 21; 44(20):7406-28. PubMed ID: 26051875
    [Abstract] [Full Text] [Related]

  • 2. Review of Core-shell structure zeolite-based catalysts for NOx emission control.
    Jia L, Liu J, Cheng H, Zhao Z, Liu J.
    J Environ Sci (China); 2025 Apr 21; 150():451-465. PubMed ID: 39306420
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effects of Desilication in NaOH/Piperidine Medium and Phosphorus Modification on the Catalytic Activity of HZSM-5 Catalyst in Methanol to Propylene Conversion.
    Safaei E, Taghizadeh M.
    Comb Chem High Throughput Screen; 2021 Apr 21; 24(4):546-558. PubMed ID: 32664835
    [Abstract] [Full Text] [Related]

  • 5. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C, Di Iorio JR, Schneider WF, Gounder R.
    Acc Chem Res; 2020 Sep 15; 53(9):1881-1892. PubMed ID: 32786332
    [Abstract] [Full Text] [Related]

  • 6. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.
    Petitto C, Delahay G.
    J Environ Sci (China); 2018 Mar 15; 65():246-252. PubMed ID: 29548395
    [Abstract] [Full Text] [Related]

  • 7. One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn-ZSM-5, characterization, and catalytic oxidation of hydrocarbons.
    Meng Y, Genuino HC, Kuo CH, Huang H, Chen SY, Zhang L, Rossi A, Suib SL.
    J Am Chem Soc; 2013 Jun 12; 135(23):8594-605. PubMed ID: 23679582
    [Abstract] [Full Text] [Related]

  • 8. Catalytic cracking of C5 raffinate to light olefins over phosphorous-modified microporous and mesoporous ZSM-5.
    Lee J, Hong UG, Hwang S, Youn MH, Song IK.
    J Nanosci Nanotechnol; 2013 Nov 12; 13(11):7504-10. PubMed ID: 24245282
    [Abstract] [Full Text] [Related]

  • 9. Unlocking Mixed-Metal Oxides Active Centers via Acidity Regulation for K&SO2 Poisoning Resistance: Self-Detoxification Mechanism of Zeolite-Confined deNOx Catalysts.
    Li G, Li G, Liao M, Liu W, Zhang H, Huang S, Huang T, Zhang S, Li Z, Peng H.
    Environ Sci Technol; 2024 Jun 11; 58(23):10388-10397. PubMed ID: 38828512
    [Abstract] [Full Text] [Related]

  • 10. Environmentally-benign catalysts for the selective catalytic reduction of NO(x) from diesel engines: structure-activity relationship and reaction mechanism aspects.
    Liu F, Yu Y, He H.
    Chem Commun (Camb); 2014 Aug 11; 50(62):8445-63. PubMed ID: 24819654
    [Abstract] [Full Text] [Related]

  • 11. Structural/Texture Evolution During Facile Substitution of Ni into ZSM-5 Nanostructure vs. its Impregnation Dispersion Used in Selective Transformation of Methanol to Ethylene and Propylene.
    Sadeghpour P, Haghighi M, Esmaeili M.
    Comb Chem High Throughput Screen; 2021 Aug 11; 24(4):490-508. PubMed ID: 32842938
    [Abstract] [Full Text] [Related]

  • 12. Spectroscopic identification and catalytic relevance of NH4+ intermediates in selective NOx reduction over Cu-SSZ-13 zeolites.
    Rizzotto V, Chen D, Tabak BM, Yang JY, Ye D, Simon U, Chen P.
    Chemosphere; 2020 Jul 11; 250():126272. PubMed ID: 32109703
    [Abstract] [Full Text] [Related]

  • 13. Zeolites as Catalysts for Fuels Refining after Indirect Liquefaction Processes.
    Klerk A.
    Molecules; 2018 Jan 06; 23(1):. PubMed ID: 29316624
    [Abstract] [Full Text] [Related]

  • 14. Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention.
    Hwang A, Bhan A.
    Acc Chem Res; 2019 Sep 17; 52(9):2647-2656. PubMed ID: 31403774
    [Abstract] [Full Text] [Related]

  • 15. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).
    Kröcher O, Brandenberger S.
    Chimia (Aarau); 2012 Sep 17; 66(9):687-93. PubMed ID: 23211727
    [Abstract] [Full Text] [Related]

  • 16. Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability.
    van der Bij HE, Meirer F, Kalirai S, Wang J, Weckhuysen BM.
    Chemistry; 2014 Dec 15; 20(51):16922-32. PubMed ID: 25370739
    [Abstract] [Full Text] [Related]

  • 17. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts.
    Chung KH, Chang DR, Park BG.
    Bioresour Technol; 2008 Nov 15; 99(16):7438-43. PubMed ID: 18387298
    [Abstract] [Full Text] [Related]

  • 18. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia.
    Chen B, Xu R, Zhang R, Liu N.
    Environ Sci Technol; 2014 Dec 02; 48(23):13909-16. PubMed ID: 25365767
    [Abstract] [Full Text] [Related]

  • 19. Porous materials in catalysis: challenges for mesoporous materials.
    Perego C, Millini R.
    Chem Soc Rev; 2013 May 07; 42(9):3956-76. PubMed ID: 23132427
    [Abstract] [Full Text] [Related]

  • 20. Effect of Mo contents on properties of Mo/ZSM-5 zeolite catalyst for NOx reduction.
    Li Z, Huang W, Xie KC.
    J Environ Sci (China); 2005 May 07; 17(1):103-5. PubMed ID: 15900767
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.