These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 2605330
1. Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes. Alonso C, Pries AR, Gaehtgens P. Biorheology; 1989; 26(2):229-46. PubMed ID: 2605330 [Abstract] [Full Text] [Related]
2. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity. Alonso C, Pries AR, Kiesslich O, Lerche D, Gaehtgens P. Am J Physiol; 1995 Jan; 268(1 Pt 2):H25-32. PubMed ID: 7840268 [Abstract] [Full Text] [Related]
3. Tube flow of human blood at near zero shear. Gaehtgens P. Biorheology; 1987 Jan; 24(4):367-76. PubMed ID: 3663895 [Abstract] [Full Text] [Related]
4. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes. Alonso C, Pries AR, Gaehtgens P. Am J Physiol; 1993 Aug; 265(2 Pt 2):H553-61. PubMed ID: 8368359 [Abstract] [Full Text] [Related]
5. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Reinke W, Johnson PC, Gaehtgens P. Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742 [Abstract] [Full Text] [Related]
6. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes. Murata T. Biorheology; 1996 Aug; 33(3):267-83. PubMed ID: 8935183 [Abstract] [Full Text] [Related]
7. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Cokelet GR, Goldsmith HL. Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854 [Abstract] [Full Text] [Related]
8. A model for motion and sedimentation of cylindrical red-cell aggregates during slow blood flow in narrow horizontal tubes. Secomb TW, el-Kareh AW. J Biomech Eng; 1994 Aug; 116(3):243-9. PubMed ID: 7799623 [Abstract] [Full Text] [Related]
9. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Reinke W, Gaehtgens P, Johnson PC. Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291 [Abstract] [Full Text] [Related]
10. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes. Murata T, Secomb TW. Biorheology; 1989 Sep; 26(2):247-59. PubMed ID: 2605331 [Abstract] [Full Text] [Related]
12. Rheological effects of red blood cell aggregation in the venous network: a review of recent studies. Bishop JJ, Popel AS, Intaglietta M, Johnson PC. Biorheology; 2001 Jul; 38(2-3):263-74. PubMed ID: 11381180 [Abstract] [Full Text] [Related]
14. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile. Stoltz JF, Donner M. Schweiz Med Wochenschr Suppl; 1991 Jul; 43():41-9. PubMed ID: 1843037 [Abstract] [Full Text] [Related]
17. Rheology of human blood, near and at zero flow. Effects of temperature and hematocrit level. MERRILL EW, GILLILAND ER, COKELET G, SHIN H, BRITTEN A, WELLS RE. Biophys J; 1963 May; 3(3):199-213. PubMed ID: 13935042 [Abstract] [Full Text] [Related]
18. Perfusion pressure and blood flow determine microvascular apparent viscosity. Yalcin O, Ortiz D, Williams AT, Johnson PC, Cabrales P. Exp Physiol; 2015 Aug; 100(8):977-87. PubMed ID: 26011432 [Abstract] [Full Text] [Related]
20. [Quantification of the effects of fibrinolytic therapy upon the flow behavior of blood (author's transl)]. Schmid-Schönbein H, Rieger H, Hess H. Klin Wochenschr; 1977 Feb 01; 55(3):111-9. PubMed ID: 834021 [Abstract] [Full Text] [Related] Page: [Next] [New Search]