These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
385 related items for PubMed ID: 26066005
1. Thermal sensitivity of cold climate lizards and the importance of distributional ranges. Bonino MF, Moreno Azócar DL, Schulte JA, Abdala CS, Cruz FB. Zoology (Jena); 2015 Aug; 118(4):281-90. PubMed ID: 26066005 [Abstract] [Full Text] [Related]
2. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ, While GM, Beeton NJ, Wapstra E. J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [Abstract] [Full Text] [Related]
3. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. Kubisch EL, Fernández JB, Ibargüengoytía NR. J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700 [Abstract] [Full Text] [Related]
4. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J, Kearney MR, Hoffmann AA. Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [Abstract] [Full Text] [Related]
5. Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus. Cecchetto NR, Medina SM, Ibargüengoytía NR. Sci Rep; 2020 Sep 07; 10(1):14732. PubMed ID: 32895421 [Abstract] [Full Text] [Related]
6. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Pontes-da-Silva E, Magnusson WE, Sinervo B, Caetano GH, Miles DB, Colli GR, Diele-Viegas LM, Fenker J, Santos JC, Werneck FP. J Therm Biol; 2018 Apr 07; 73():50-60. PubMed ID: 29549991 [Abstract] [Full Text] [Related]
7. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Sheth SN, Angert AL. Evolution; 2014 Oct 07; 68(10):2917-31. PubMed ID: 25066881 [Abstract] [Full Text] [Related]
8. Reproductive mode evolution in lizards revisited: updated analyses examining geographic, climatic and phylogenetic effects support the cold-climate hypothesis. Watson CM, Makowsky R, Bagley JC. J Evol Biol; 2014 Dec 07; 27(12):2767-80. PubMed ID: 25365910 [Abstract] [Full Text] [Related]
10. An ecophysiological background for biogeographic patterns of two island lizards? Carretero MA, Lopes EP, Vasconcelos R. Naturwissenschaften; 2016 Dec 07; 103(11-12):97. PubMed ID: 27889831 [Abstract] [Full Text] [Related]
11. Running in cold weather: morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). Bonino MF, Azócar DL, Tulli MJ, Abdala CS, Perotti MG, Cruz FB. J Exp Zool A Ecol Genet Physiol; 2011 Oct 01; 315(8):495-503. PubMed ID: 21809451 [Abstract] [Full Text] [Related]
12. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Baldanzi S, Weidberg NF, Fusi M, Cannicci S, McQuaid CD, Porri F. Oecologia; 2015 Dec 01; 179(4):1067-78. PubMed ID: 26232091 [Abstract] [Full Text] [Related]
13. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change? ObregÓn RL, Scolaro JA, IbargÜengoytÍa NR, Medina M. Integr Zool; 2021 Jan 01; 16(1):53-66. PubMed ID: 32822078 [Abstract] [Full Text] [Related]
14. How and when melanic coloration is an advantage for lizards: the case of three closely-related species of Liolaemus. Moreno Azócar DL, Nayan AA, Perotti MG, Cruz FB. Zoology (Jena); 2020 Aug 01; 141():125774. PubMed ID: 32590232 [Abstract] [Full Text] [Related]
15. Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. Artacho P, Saravia J, Perret S, Bartheld JL, Le Galliard JF. J Therm Biol; 2017 Jan 01; 63():78-87. PubMed ID: 28010818 [Abstract] [Full Text] [Related]
16. Cooler performance breadth in a viviparous skink relative to its oviparous congener. Landry Yuan F, Pickett EJ, Bonebrake TC. J Therm Biol; 2016 Oct 01; 61():106-114. PubMed ID: 27712651 [Abstract] [Full Text] [Related]
17. EVOLUTION OF SPRINT SPEED IN LACERTID LIZARDS: MORPHOLOGICAL, PHYSIOLOGICAL, AND BEHAVIORAL COVARIATION. Bauwens D, Garland T, Castilla AM, Van Damme R. Evolution; 1995 Oct 01; 49(5):848-863. PubMed ID: 28564867 [Abstract] [Full Text] [Related]
18. Thermophysiological plasticity could buffer the effects of global warming on a Patagonian lizard. Kubisch EL, Fernández JB, Ibargüengoytía NR. J Exp Zool A Ecol Integr Physiol; 2023 Jul 01; 339(6):590-601. PubMed ID: 37058282 [Abstract] [Full Text] [Related]
19. Evolution of viviparity: a phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards. Lambert SM, Wiens JJ. Evolution; 2013 Sep 01; 67(9):2614-30. PubMed ID: 24033171 [Abstract] [Full Text] [Related]
20. Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. Trochet A, Dupoué A, Souchet J, Bertrand R, Deluen M, Murarasu S, Calvez O, Martinez-Silvestre A, Verdaguer-Foz I, Darnet E, Chevalier HL, Mossoll-Torres M, Guillaume O, Aubret F. J Therm Biol; 2018 Oct 01; 77():38-44. PubMed ID: 30196897 [Abstract] [Full Text] [Related] Page: [Next] [New Search]