These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
470 related items for PubMed ID: 26069151
1. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S. Gerotto C, Franchin C, Arrigoni G, Morosinotto T. Plant Physiol; 2015 Aug; 168(4):1747-61. PubMed ID: 26069151 [Abstract] [Full Text] [Related]
2. Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens. Pinnola A, Cazzaniga S, Alboresi A, Nevo R, Levin-Zaidman S, Reich Z, Bassi R. Plant Cell; 2015 Nov; 27(11):3213-27. PubMed ID: 26508763 [Abstract] [Full Text] [Related]
3. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T. New Phytol; 2012 Nov; 196(3):763-773. PubMed ID: 23005032 [Abstract] [Full Text] [Related]
4. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV. Nat Plants; 2017 Jan 30; 3():16225. PubMed ID: 28134919 [Abstract] [Full Text] [Related]
5. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR. Photosynth Res; 2020 May 30; 144(2):195-208. PubMed ID: 32266611 [Abstract] [Full Text] [Related]
6. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Pinnola A, Dall'Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresi A. Plant Cell; 2013 Sep 30; 25(9):3519-34. PubMed ID: 24014548 [Abstract] [Full Text] [Related]
7. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW. Plant J; 2012 Jan 30; 69(2):289-301. PubMed ID: 21919982 [Abstract] [Full Text] [Related]
8. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP, Ruban AV. Plant J; 2010 Jan 30; 61(2):283-9. PubMed ID: 19843315 [Abstract] [Full Text] [Related]
9. Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Dikaios I, Schiphorst C, Dall'Osto L, Alboresi A, Bassi R, Pinnola A. Photosynth Res; 2019 Dec 30; 142(3):249-264. PubMed ID: 31270669 [Abstract] [Full Text] [Related]
10. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P. Nat Plants; 2016 Feb 01; 2():15225. PubMed ID: 27249196 [Abstract] [Full Text] [Related]
11. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Albanese P, Manfredi M, Meneghesso A, Marengo E, Saracco G, Barber J, Morosinotto T, Pagliano C. Biochim Biophys Acta; 2016 Oct 01; 1857(10):1651-60. PubMed ID: 27378191 [Abstract] [Full Text] [Related]
12. Role of Thylakoid Protein Phosphorylation in Energy-Dependent Quenching of Chlorophyll Fluorescence in Rice Plants. Pashayeva A, Wu G, Huseynova I, Lee CH, Zulfugarov IS. Int J Mol Sci; 2021 Jul 26; 22(15):. PubMed ID: 34360743 [Abstract] [Full Text] [Related]
13. PsbS-dependent and -independent mechanisms regulate carotenoid-chlorophyll energy coupling in grana thylakoids. Gacek DA, Holleboom CP, Tietz S, Kirchhoff H, Walla PJ. FEBS Lett; 2019 Nov 26; 593(22):3190-3197. PubMed ID: 31444795 [Abstract] [Full Text] [Related]
14. PHOTOSYSTEM II SUBUNIT R is required for efficient binding of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii. Xue H, Tokutsu R, Bergner SV, Scholz M, Minagawa J, Hippler M. Plant Physiol; 2015 Apr 26; 167(4):1566-78. PubMed ID: 25699588 [Abstract] [Full Text] [Related]
15. The mobile thylakoid phosphoprotein TSP9 interacts with the light-harvesting complex II and the peripheries of both photosystems. Hansson M, Dupuis T, Strömquist R, Andersson B, Vener AV, Carlberg I. J Biol Chem; 2007 Jun 01; 282(22):16214-22. PubMed ID: 17400553 [Abstract] [Full Text] [Related]
16. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. Shukla MK, Watanabe A, Wilson S, Giovagnetti V, Moustafa EI, Minagawa J, Ruban AV. J Biol Chem; 2020 Dec 18; 295(51):17816-17826. PubMed ID: 33454016 [Abstract] [Full Text] [Related]
17. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Townsend AJ, Saccon F, Giovagnetti V, Wilson S, Ungerer P, Ruban AV. Biochim Biophys Acta Bioenerg; 2018 Sep 18; 1859(9):666-675. PubMed ID: 29548769 [Abstract] [Full Text] [Related]
18. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. Pinnola A. J Exp Bot; 2019 Oct 24; 70(20):5527-5535. PubMed ID: 31424076 [Abstract] [Full Text] [Related]
19. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification. Kalituho L, Grasses T, Graf M, Rech J, Jahns P. Planta; 2006 Feb 24; 223(3):532-41. PubMed ID: 16136330 [Abstract] [Full Text] [Related]
20. Protein-protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution. Daskalakis V. Phys Chem Chem Phys; 2018 May 07; 20(17):11843-11855. PubMed ID: 29658553 [Abstract] [Full Text] [Related] Page: [Next] [New Search]