These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1072 related items for PubMed ID: 26070241
1. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo. Kim HW, Choi WS, Sorscher N, Park HJ, Tronche F, Palmiter RD, Xia Z. Neurobiol Aging; 2015 Sep; 36(9):2617-27. PubMed ID: 26070241 [Abstract] [Full Text] [Related]
2. Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson's disease-like non-motor symptoms without loss of dopamine neurons. Choi WS, Kim HW, Tronche F, Palmiter RD, Storm DR, Xia Z. Sci Rep; 2017 Mar 22; 7():44989. PubMed ID: 28327638 [Abstract] [Full Text] [Related]
3. 14-3-3 inhibition promotes dopaminergic neuron loss and 14-3-3θ overexpression promotes recovery in the MPTP mouse model of Parkinson's disease. Ding H, Underwood R, Lavalley N, Yacoubian TA. Neuroscience; 2015 Oct 29; 307():73-82. PubMed ID: 26314634 [Abstract] [Full Text] [Related]
4. Systemically administered neuregulin-1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in MPTP mouse models of Parkinson's disease. Depboylu C, Rösler TW, de Andrade A, Oertel WH, Höglinger GU. J Neurochem; 2015 May 29; 133(4):590-7. PubMed ID: 25581060 [Abstract] [Full Text] [Related]
5. Social enrichment attenuates nigrostriatal lesioning and reverses motor impairment in a progressive 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Goldberg NR, Fields V, Pflibsen L, Salvatore MF, Meshul CK. Neurobiol Dis; 2012 Mar 29; 45(3):1051-67. PubMed ID: 22198503 [Abstract] [Full Text] [Related]
6. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model. Qi X, Davis B, Chiang YH, Filichia E, Barnett A, Greig NH, Hoffer B, Luo Y. J Neurochem; 2016 Sep 29; 138(5):746-57. PubMed ID: 27317935 [Abstract] [Full Text] [Related]
7. Overexpression of Parkinson's disease-associated alpha-synucleinA53T by recombinant adeno-associated virus in mice does not increase the vulnerability of dopaminergic neurons to MPTP. Dong Z, Ferger B, Feldon J, Büeler H. J Neurobiol; 2002 Oct 29; 53(1):1-10. PubMed ID: 12360578 [Abstract] [Full Text] [Related]
8. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons. Hong J, Sha S, Zhou L, Wang C, Yin J, Chen L. Cell Death Dis; 2015 Jul 23; 6(7):e1832. PubMed ID: 26203861 [Abstract] [Full Text] [Related]
9. Neuroprotection by Paeoniflorin in the MPTP mouse model of Parkinson's disease. Zheng M, Liu C, Fan Y, Yan P, Shi D, Zhang Y. Neuropharmacology; 2017 Apr 23; 116():412-420. PubMed ID: 28093210 [Abstract] [Full Text] [Related]
10. Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons. Sterky FH, Hoffman AF, Milenkovic D, Bao B, Paganelli A, Edgar D, Wibom R, Lupica CR, Olson L, Larsson NG. Hum Mol Genet; 2012 Mar 01; 21(5):1078-89. PubMed ID: 22090423 [Abstract] [Full Text] [Related]
11. Expression of c-Jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Nishi K. Brain Res; 1997 Oct 10; 771(1):133-41. PubMed ID: 9383016 [Abstract] [Full Text] [Related]
12. Neuroprotective effect of L-dopa on dopaminergic neurons is comparable to pramipexol in MPTP-treated animal model of Parkinson's disease: a direct comparison study. Shin JY, Park HJ, Ahn YH, Lee PH. J Neurochem; 2009 Nov 10; 111(4):1042-50. PubMed ID: 19765187 [Abstract] [Full Text] [Related]
13. Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss. Alam G, Edler M, Burchfield S, Richardson JR. Neurotoxicology; 2017 May 10; 60():99-106. PubMed ID: 28377118 [Abstract] [Full Text] [Related]
14. Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. Tonouchi A, Nagai J, Togashi K, Goshima Y, Ohshima T. J Neurochem; 2016 Jun 10; 137(5):795-805. PubMed ID: 26991935 [Abstract] [Full Text] [Related]
15. Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Hayley S, Crocker SJ, Smith PD, Shree T, Jackson-Lewis V, Przedborski S, Mount M, Slack R, Anisman H, Park DS. J Neurosci; 2004 Feb 25; 24(8):2045-53. PubMed ID: 14985447 [Abstract] [Full Text] [Related]
16. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease. Novikova L, Garris BL, Garris DR, Lau YS. Neuroscience; 2006 Jun 19; 140(1):67-76. PubMed ID: 16533572 [Abstract] [Full Text] [Related]
17. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons In vivo. Saporito MS, Brown EM, Miller MS, Carswell S. J Pharmacol Exp Ther; 1999 Feb 19; 288(2):421-7. PubMed ID: 9918541 [Abstract] [Full Text] [Related]
18. SEA0400, a specific Na+/Ca2+ exchange inhibitor, prevents dopaminergic neurotoxicity in an MPTP mouse model of Parkinson's disease. Ago Y, Kawasaki T, Nashida T, Ota Y, Cong Y, Kitamoto M, Takahashi T, Takuma K, Matsuda T. Neuropharmacology; 2011 Dec 19; 61(8):1441-51. PubMed ID: 21903118 [Abstract] [Full Text] [Related]
19. Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Sugama S, Wirz SA, Barr AM, Conti B, Bartfai T, Shibasaki T. Neuroscience; 2004 Dec 19; 128(2):451-8. PubMed ID: 15350655 [Abstract] [Full Text] [Related]
20. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress. Paul R, Choudhury A, Kumar S, Giri A, Sandhir R, Borah A. PLoS One; 2017 Dec 19; 12(2):e0171285. PubMed ID: 28170429 [Abstract] [Full Text] [Related] Page: [Next] [New Search]